Методы естественнонаучного познания. Процесс научного познания начинается с …. Основные признаки естественнонаучного познания

Метод есть совокупность правил, приемов познавательной и практической деятельности, обусловленных природой и закономерностями исследуемого объекта.

Современная система методов познания отличается высокой сложностью и дифференцированностью. Наиболее простая классификация методов познания предполагает их разделение на всеобщие, общенаучные, конкретно-научные.

1. Всеобщие методы характеризуют приемы и способы иссле­дования на всех уровнях научного познания. К ним относятся методы анализа, синтеза, ин­дукции, дедукции, сравнения, идеализации и т.д. Эти методы настолько универсальны, что работают даже на уровне обыденного сознания.

Анализ представляет собой процедуру мысленного (или реального) расчленения, разложения объекта на составные элементы в целях выявления их сис­темных свойств и отношений.

Синтез - операция соединения выделенных в анализе элементов изучаемого объекта в единое целое.

Индукция - способ рассуждения или метод получения знания, при котором общий вывод делается на основе обобщения частных посылок. Индукция может быть полной и неполной. Пол­ная индукция возможна тогда, когда посылки охватывают все яв­ления того или иного класса. Однако такие случаи встречаются редко. Невозможность учесть все явления данного класса заставля­ет использовать неполную индукцию, конечные выводы которой, не имеют строго однозначного характера.

Дедукция - способ рассуждения или метод движения знания от общего к частному, т.е. процесс логического перехода от об­щих посылок к заключениям о частных случаях. Дедуктивный метод может давать строгое, досто­верное знание при условии истинности общих посылок и соблю­дении правил логического вывода.

Аналогия - прием познания, при котором наличие сходства признаков нетождественных объектов, позволяет предположить их сходство и в других признаках. Так, обнаруженные при изучении света явления интерференции и дифракции позво­лили сделать вывод о его волновой природе, поскольку раньше те же свойства были зафиксированы у звука, волновой характер которого был уже точно установлен. Аналогия - незаменимое средство наглядности, изобразительности мышления. Но еще Аристотель предупреждал, что «аналогия не есть доказательство»! Она может давать лишь предположительное знание.

Абстрагирование - прием мышления, заключающийся в от­влечении от несущественных, незначимых для субъекта познания свойств и отношений исследуемого объекта с одновременным выде­лением тех его свойств, которые представляются важными и суще­ственными в контексте исследования.

Идеализация – процесс мысленного создания понятий об идеализированных объектах, которые в реальном мире не существуют, но имеют прообраз. Примеры: идеальный газ, абсолютно черное тело.


2. Общенаучные методы – моделирование, наблюдение, эксперимент.

Исходным методом научного познания считается наблюдение , т.е. преднамеренное и целенаправленное изучение объектов, опи­рающееся на чувственные способности человека - ощущения и восприятия. В ходе наблюдения возможно получение информации лишь о внешних, поверхностных сторонах, качествах и признаках изучаемых объектов.

Итогом научных наблюдений всегда является описание иссле­дуемого объекта, фиксируемое в виде текстов, рисунков, схем, графиков, диаграмм и т.д. С развитием науки наблюдение стано­вится все более сложным и опосредованным путем использова­ния различных технических устройств, приборов, измерительных инструментов.

Еще одним важнейшим методом естественнонаучного позна­ния является эксперимент . Эксперимент - способ активного, целенаправленного исследования объектов в контро­лируемых и управляемых условиях. Эксперимент включает про­цедуры наблюдения и измерения, однако не сводится к ним. Ведь экспериментатор имеет возможность подбирать необходимые ус­ловия наблюдения, комбинировать и варьировать их, добиваясь «чистоты» проявления изучаемых свойств, а также вмешиваться в «естественное» течение исследуемых процессов и даже искусст­венно их воспроизводить.

Главной задачей эксперимента, как правило, является предсказание теории. Подобные эксперименты называют исследовательскими . Другой тип эксперимента - проверочный - предназначен для подтвержде­ния тех или иных теоретических предположений.

Моделирование - метод замещения изучаемого объекта по­добным ему по ряду интересующих исследователя свойств и ха­рактеристик. Данные, полученные при изучении модели, затем с некоторыми поправками переносятся на реальный объект. Моде­лирование применяется в основном тогда, когда прямое изучение объекта либо невозможно (очевидно, что феномен «ядерной зи­мы» в результате массированного применения ядерного оружия кроме как на модели лучше не испытывать), либо связано с не­померными усилиями и затратами. Последствия крупных вмеша­тельств в природные процессы (поворот рек, например) целесообразно сначала изучить на гидродинамических моделях, а потом уже экспериментировать с реальными природными объектами.

Моделирование - метод фактически универсальный. Он может использоваться в системах самых различных уровней. Обычно выделяют такие типы моделирования, как предметное, математическое, логическое, физическое, химическое и проч. Широчайшее распространение в современных условиях получи­ло компьютерное моделирование.

3. Конкретно-научные методы представляют собой системы сформулированных принципов конкретных научных теорий. Н: психоаналитический метод в психологии, метод морфофизиологических индикаторов в биологии и т.д.

Вопросы для самопроверки

1. Вопрос: Что такое познание?

а) Получение информации об избранном явлении природы.

б) Проведение экспериментальной работы.

в) Построение гипотез на основе экспериментальных данных, их теоретическое обобщение и формирование прогноза дальнейшего развития избранного направления исследования.

г) Создание совершенной теории и попытки ее экспериментального подтверждения.

2. Вопрос: Что такое системность, как один из принципов познания?

а) Четкость определений в экспериментальных исследованиях.

б) Взаимосвязь разносторонних подходов к изучению избранной проблемы.

в) Определенность решения проблемы избранным способом.

г) Взаимосвязанность положительных и отрицательных точек зрения.

3. Вопрос: Что такое «концепция»?

а) Точка зрения отдельного ученого на установленный научный факт.

б) Система теоретических положений характеризующих группу аналогичных явлений природы.

в) Научное исследование, опирающееся только на теоретическое обоснование.

г) Подробное описание отдельного объекта исследования.

4. Вопрос: Что представляет собой предмет «Концепции современного естествознания»?

а) Изучение принципов эволюции Вселенной.

б) Экспериментальное исследование возникновения человека.

в) Познание наиболее общих естественнонаучных концепций, принципов, законов организации Вселенной.

г) Изучение математических моделей процессов и явлений на Земле.

5. Вопрос: Что такое научные знания?

а) Универсальная экспериментальная база.

б) Группа гипотез посвященных глобальной проблеме мироздания.

в) Вся совокупность разнообразных экспериментально – теоретических научных дисциплин.

г) Футуристические представления о судьбе Вселенной.

6. Вопрос: Что означает «фундаментальность» научных знаний?

а) Теологическая обоснованность научных утверждений.

б) Универсальность научных знаний, основанная на системе базовых концепций.

в) Логичность в решении конкретной научной проблемы.

г) Последовательность в постановке задачи исследования.

7. Вопрос: Как Вы понимаете «проверяемость» научных знаний?

а) Возможность независимым методом исследования получить сходные результаты.

б) Выяснение механизмов течения процессов.

в) Участие в исследовании контрольной группы экспертов.

г) Субъективные представления исследователя.

8. Вопрос: Что такое «универсальность» научных знаний?

а) Результаты научных исследований, не зависящие от способа их получения.

б) Применимость результатов исследования в различных областях науки.

в) Совпадение результатов исследования в разные промежутки времени.


г) Высокая точность результатов исследования.

9. Вопрос: Что такое «опровержимость» научных данных?

а) Постоянная повторяемость результатов исследования.

б) Способность обосновать направление исследования.

в) Совершенствование системы управления исследованием.

г) Отрицание прежних результатов исследования за счет полученных новых данных.

10. Вопрос: Что такое «прикладные» исследования?

а) Исследования, позволяющие делать какие-либо предположения.

б) Исследования, позволяющие применять научные результаты для осуществления прикладных, технологических задач.

в) Исследования во вспомогательных направлениях развития технологий.

г) Изучение дополнительных свойств концепций, теорий.

11. Вопрос: Что представляют собой информационно-мониторинговая группа методов исследования?

а) Группа методов, позволяющая объективно обобщать литературные данные.

б) Группа методов, позволяющая систематизировать знания по избранному объекту.

в) Группа методов, позволяющая обобщать систематические, периодически проводимые наблюдения и эксперименты.

г) Группа методов объединения теоретических и теологических исследований одного и того же объекта.

12. Что представляет собой теоретико-аналитическая группа методов исследования?

а) Группа теоретических методов, позволяющих проанализировать данные исследования, теоретически обобщить их с ранее полученными или уже известными и сделать прогноз о свойствах еще не открытых подобных явлений.

б) Группа теоретических методов, позволяющая сделать частные выводы о состоянии избранного объекта исследования.

в) Группа экспериментальных методов для изучения наиболее общих явлений природы.

г) Группа методов для всестороннего изучения свойств избранного объекта.

13. Вопрос: Что обозначает термин «естественнонаучная культура»?

а) Система религиозных представлений о природе.

б) Исторический подход в изучении развития общества.

в) Система научных взглядов и базовых представлений, позволяющая глубже понять природные явления.

г) Социальные принципы развития науки.

14. Вопрос: Что представляет собой «гуманитарная культура»?

а) Система взглядов и концепций отражающих развитие общества, его гуманитарные ценности.

б) Уровень развития литературы.

в) Степень социальной активности человека.

г) Особенности психологической активности человека в определении его роли в социуме.

15. Назовите основные принципы объединения естественнонаучной и гуманитарной культуры.

а) Стремление индивида к совершенствованию гуманитарных знаний о свойствах того или иного природного объекта.

б) Формирование разностороннего представления об окружающем нас мире во всех его проявлениях: естественнонаучном и гуманитарном.

в) Стремление совершенствовать естественнонаучные представления о формировании Вселенной.

г) Возможность разностороннего описания поведения индивида в обществе.

Вопросы к зачету по теме

1. Какова цель изучения данной дисциплины?

Методология естественнонаучного познания

Лекция 1: «Основные положения методологии естественнонаучного познания.

Научное познание окружающего мира представляет собой систему теорий, получивших на определенном историческом этапе и экспериментальное подтверждение; современных методов теоретического и экспериментального исследования; гипотез, предполагающих перспективное развитие научных представлений.

Благодаря своей точности и объективности именно научное познание стало методологическим фундаментом естествознания в современном эволюционирующем мире.

Основа современного научного познания - естественнонаучный подход, основанный на последних достижениях науки. В нем объединены современные достижения физики, химии, биологии, медицины и смежных с ними дисциплин, прежде всего, в философском, концептуальном, понятийном плане.

Важнейшим инструментом естественнонаучного подхода является метод научного познания – многократно отработанная, постоянно совершенствующаяся, благодаря полученным новым знаниям, система действий, приводящая к новым, возможно теоретически предсказанным результатам.

Например, человек одевается, используя при этом навыки, полученные им еще в детстве, но новые формы одежды требуют от него использования этого опыта для освоения новых форм одежды. Применение телескопа, как метода исследования, позволяет изучать различные участки Вселенной, как уже известные, так и новые, с совершенно новыми свойствами. Микроскопия – метод, открывающий ученым двери в микромир: мир изученных и совершено новых микрочастиц и организмов.

Краеугольным камнем представления о методе научного познания являетсяметодология - наука о его структуре, оптимизации применения, учение о принципах, формах и способах (методах) организации научной деятельности: теоретических и экспериментальных исследований.

Впервые основные черты метода научного познания были сформулированы Рене Декартом (1596 - 1650).

В их основе представления об истине , как о предмете познания: обязательной достоверности научных знаний; научном факте, как объекте изучения и единстве теоретического, и эмпирического подхода в исследовании.

Мы должны понимать, что абсолютная истина недостижима . Ее поиск вечен и каждый раз, устанавливая какой-либо уровень истинности того или иного факта, цивилизация на шаг продвигается вперед по бесконечному пути познания природы. Поэтому, правильно говорить об истинности данного научного факта при существующем уровне познания : развитии науки, технологическом обеспечении.

Аналогично можно представить себе достоверность научных знаний . Достоверность, т.е. «полная» проверяемость научных фактов осуществляется с точностью до чувствительности исследовательских приборов, существующих методов изучения, признанных, на данном этапе, научных теорий.

Нужно ли, понимая все это, стремиться к максимальной достоверности научных данных? Конечно да. Ведь только максимальная достоверность сегодня, обеспечивает прочную теоретическую базу исследования завтра, с которой, в свою очередь, будет сделан рывок на очередной уровень достоверности.

Научный факт – событие, существующее независимо от наших ощущений и возможностей его изучения. Главной проблемой является его выявление, понимание, интерпретация в рамках существующей научной базы и, если последнее невозможно, доказательная корректировка научных знаний по данному вопросу.

Но есть действительно непреложная истина в научном познании. Это единство теоретического и эмпирического подхода в исследовании. Интересно, что эти подходы очень редко могут быть применены одновременно.

Экспериментально е обнаружение того или иного явления ведет за собой его теоретическое осмысление. Например, экспериментальное обнаружение сверхтекучести гелия дало толчок к созданию теории сверхтекучести. Наоборот, теоретическое предсказание существования неизвестных химических элементов с определенными свойствами Д.И. Менделеевым позволило, в результате направленных экспериментов получить их.

По признаку применения выделяют две группы методов: экспериментальные (эмпирические) и теоретические . Возможна и комбинация этих двух групп методов.

К экспериментальным методам относят непосредственное получение информации об объекте исследования, например наблюдение – восприятие событий окружающего нас мира: мы видим (наблюдаем) смену дня и ночи, появление снега зимой и зелени весной; эксперимент – целенаправленное изучение объектов или явлений окружающего нас мира, искусственно переводя их, с помощью произвольного внешнего воздействия, в необходимые для исследования условия. Например, получение электрокардиограммы человека, изучение структурных свойств минералов, металлов, строения вещества с применением современного экспериментального оборудования. Измерение экспериментальное определение тех или иных количественных характеристик объекта или явления окружающего нас мира с помощью измерительных приборов. Простейшим измерительным прибором является деревянный метр для измерения ткани. В современной науке не существует инструментальных методов, не использующих количественных характеристик объекта исследования. Описание – метод, позволяющий фиксировать результаты наблюдения или эксперимента, как констатацию фактов с их подробным описанием.

Однако, этого не достаточно. Важность науки состоит в умении анализировать, планировать и предсказывать дальнейшее развитие событий. Поэтому экспериментальные методы тесно связаны с теоретическими.

К теоретическим методам относятся: формализация – отображение результатов экспериментов или наблюдений в виде системы обобщающих определений, утверждений или выводов;

аксиоматизация – формирование теоретических построений на основе аксиом – утверждений, не требующих доказательств. Например, изучаемая в средней школе, геометрия Евклида основана на нескольких аксиомах; гипотетико-дедуктивный подход, состоящий в выдвижении каких-либо гипотез и их последующей логической и эмпирической проверки. Например, гипотеза о том, что причины возникновения ветров кроются в большой разности температур на границах атмосферных фронтов и они тем сильнее, чем больше это различие находит свое подтверждение в многочисленных теоретических построениях и результатах эмпирических исследований.

В практической науке широко применяются и взаимно дополняют друг друга все эти методы.

Различают всеобщие, общедоступные и конкретно-научные методы . Наиболее распространены и универсальны всеобщие методы . На них мы остановимся:

анализ и синтез – процессы мысленного или фактического разложения целого на составные части и формирование целого из составных частей;

индукция и дедукция – движение от частного к общему и от общего к частному;

абстрагирование – пренебрежение рядом второстепенных, на взгляд исследователя, особенностей при разработке гипотезы, построении модели и т.д.;

обобщение – выявление наиболее общих признаков у объектов или явлений, позволяющих сопоставить их с чем-либо уже известным;

аналогия – метод позволяющий предсказывать новые свойства объекта или явления, сопоставляя их с уже известными образцами;

моделирование – формирование условного представления (модели) об объекте или явлении на основе знания ряда основных черт или признаков;

классификация – разделение изучаемых объектов или явлений по группам, в соответствии с характеристическими признаками.

Функционально,методы, применяемые для изучения данной дисциплины, делятся на две группы: экспериментально-мониторинговые и теоретико-аналитические .

Сущность первой группы методов состоит в мониторинге экспериментальных данных в различных областях естественных наук, их статистической обработке, систематизации и обобщении.

Вторая группа призвана анализировать полученные обобщенные результаты экспериментов, формировать единые теоретические представления на уровне гипотез, теорий, законов позволяющих не только описывать существующие факты, но и предсказывать новые процессы и явления природы.

Владение методологией науки позволяет правильно, в соответствии с существующей парадигмой или, наоборот, вопреки ней, грамотно, последовательно построить исследование.

Без знания методологии и использования ее принципов исследование приобретает характер запутанного, беспорядочного набора фактов и гипотез. При этом невозможно достичь главной цели научного исследования – формирования обобщенной теории, основанной на результатах системных экспериментов.

Лекция 2: «Классические методологические концепции теории познания»

Не менее важным является изучение методологических концепций научного познания , позволяющих планомерно сформировать научное исследование. Действительно, именно порядок применения научных методов, их структура и взаимосвязь определяет успех научного поиска.

Особенности выбора и применения той или иной методологической концепции научного познания определяются спецификой объекта (объектов) исследования, подходом исследователя к данной проблеме и условиями проведения изучения в зависимости от направления его научных интересов и возможностей оборудования.

Например, изучение какого-либо небесного тела может быть связано с исследованием самых различных проблем: траектории его движения, относительной светимости, поля тяготения и т.д. В каждом случае применяются специализированные методологические схемы и методы исследования.

Значит, важнейшей, первоначальной целью исследователя является выбор методологических подходов, методологических систем познания, позволяющих наиболее эффективно интерпретировать конкретные, научные результаты.

К наиболее известным концепциям методологии научного исследования относятся теория "научных революций" американского историка науки Т.Куна (1922-1996), научно-исследовательские программы И. Лакатоша (1922-1974), концепция "внешнего функционирования" Карла Поппера (1902 – 1994) и концепция физической исследовательской программы М.Д. Ахундова и С.В. Илларионова.

Вообще говоря, научная теория (по К. Попперу) представляет собой своеобразную научную машину, систему, созданную гениальным индивидом. Перед ней поставлены определенные задачи, она снабжена необходимыми (на взгляд автора) методами ее решения, принципами выбора объекта изучения. По сути, научная теория представляет собой рационально обсуждаемое и критически анализируемое изобретение. Внешнее функционирование теории состоит в постоянных столкновениях с другими теориями. Результат этих столкновений определяется критериями верификации (проверяемости) и фальсифицируемости (возможной опровергаемости) избранных теорий. Наиболее устойчивая по этим критериям теория признается наиболее верной на данном этапе исследования.

В основу теории "научных революций" Т. Куна положено учение о "парадигме" - системе концептуальных мировоззренческих представлений общепринятых в современной науке. Примерами таких парадигм могут быть гелиоцентрические представления Н. Коперника, механика И. Ньютона, принципы относительности А. Эйнштейна, системные представления И. Пригожина.

Структурно (по Т. Куну), выделяются два основных этапа в теории познания: период "нормальной" науки – относительно спокойный период накопления новых научных фактов, подтверждающих или опровергающих существующие представления (парадигму) . Например, геоцентрическая картина мира Клавдия Птолемея (90 – 160), господствовала почти полторы тысячи лет, вплоть до конца пятнадцатого века. Основное количество научных фактов не противоречило этой теории, но были такие, объяснить которые с этих позиций было сложно. Прежде всего, по Птолемею, орбиты небесных тел имели сложную петлеобразную конфигурацию, что не всегда соответствовало, например, очень точным, для своего времени, астрономическим наблюдениям датского астронома Тихо Браге (1546 – 1601).

Еще одним, хронологически более поздним примером накопления фактов периода "нормальной" науки являются результаты опыта Майкельсона – Морли по определению зависимости скорости света от направления движения "мирового эфира", основы Вселенной, заполняющей пространство между небесными телами. Содержание самого опыта будет описано ниже, но его результаты никак не вписывались в господствовавшую в то время парадигму мироустройства, основанную на механистических представлениях И. Ньютона. Ожидалось, что по ходу движения "мирового эфира" скорость света будет больше, чем против него.

Но Майкельсон и Морли экспериментального установили постоянство скорости света, не зависимо от направления движения "мирового эфира" или, что, то же самое, скорости источника излучения или приемника!

Новые научные факты, даже не совпадающие с общепринятыми представлениями, не могут сразу изменить общую картину мира, т.е. существующую на тот момент "парадигму", до тех пор, пока количество противоречий не становится критическим. Часто это сопровождается технологическим прорывом в определенных областях науки и техники, позволяющим получить новые научные данные.

Если количество противоречий велико, возникает необходимость смены парадигмы. Изменение содержания парадигмы по Т. Куну называется "научная революция" , сопровождается сменой основных научных приоритетов, конкуренцией гипотез, частных теорий. Ей сопутствует кардинальное изменение базовых концепций, представлений об окружающем нас мире. Формируется новая парадигма. После ее воцарения наступает очередной период "нормальной" науки.

Примером применения концепции Т. Куна в качестве методологической системы исследования может быть выявление механизма перехода от классических представлений И. Ньютона, парадигмы сформулированной им в 1687 г. в трехтомном труде "Математические начала натуральной философии" к релятивистским представлениям А.Эйнштейна об относительности пространственно - временного континуума.

Появлению "научной революции" и новой парадигмы Эйнштейна предшествовал период накопления фактов (период "нормальной" науки), Многие новые факты, например поведение элементарных частиц, искривление проходящего света в поле тяготения Солнца невозможно было объяснить с позиции прежней парадигмы классической науки.

Применение представлений Т. Куна позволяет, в процессе исследования, опереться на уже существующую парадигму, сопоставляя с ней установленные новые научные факты, определить степень их соответствия и возможность постановки вопроса о необходимости ее замены или наоборот, ее подтверждения. Устойчивая тенденция к росту противоречий между новыми научными фактами и прежней парадигмой ведет к постановке вопроса об изменении последней (научной революции).

После воцарения новой парадигмы, вновь наступает период "нормальной" науки, который закончился, в нашем примере, с появлением квантовой механики, рассмотревшей Вселенную и ее элементы как вероятностные волновые образования.

Методологические трудности применения концепции Т. Куна состоят в отсутствии описания механизмов изменения парадигмы под воздействием новых накопленных экспериментальных фактов.

Для решения этой проблемы была разработана концепция научно-исследовательских программ Имре Локатоша, представляющая собой структуированный метод познания. В ее основе "жесткое ядро" сформированное из фундаментальных достаточно обоснованных теоретических концепций, принципиальных подходов, формирующих общепризнанную систему мировоззрения в данной научной области. "Жесткое ядро" дополнено "защитным поясом" вспомогательных гипотез, изменение которых не ведет к изменению структуры важнейших концепций "жесткого ядра". Важными регулирующими элементами являются "негативная эвристика" , призванная исключать любые попытки объяснения новых явлений, не согласующиеся с "жестким ядром и "позитивная эвристика" позволяющая определить направления исследований, в рамках существующего "жесткого ядра". (Кстати, эвристика означает познание).

До тех пор, пока существующие фундаментальные концепции позволяют хоть немного продвигаться вперед, инструменты "позитивной и негативной эвристики будут защищать существующую теоретическую структуру. Однако при возникновении и последующем накоплении большого количества систематизированных аномальных фактов происходит смена прежней научно-исследовательской программы на новую, объясняющую эти явления. Применение исследовательской программы И. Локатоша рассмотрим на примере парадигмы квантовой механики, важнейшие положения которой: концепции Э. Шредингера, В. Гейзенберга и Луи де Бройля, вековые уравнения сформировали "жесткое ядро" исследования.

Квантово – механические методы расчетов структуры микрочастиц и течения процессов сформировали "защитный пояс" вспомогательных гипотез, основанный на негативной и позитивной эвристике.

Накопление большого количества противоречивых фактов ("негативной эвристики") привело к последовательному изменению "защитного пояса" (период "нормальной" науки по Т. Куну), а затем и "жесткого ядра" квантовой механики (научная революция по Т. Куну). Возникла новая парадигма: "концепция самоорганизации систем" Ильи Пригожина (1917 – 2003).

Сложностью концепции И. Локатоша является формирование "жесткого ядра", как совокупности неизменных фундаментальных теорий данного направления науки, что не позволяло динамично применять эту структуру для открытия новых научных областей.

Использование структурных построений методологии для динамичного создания новых концепций было дополнено концепцией физической исследовательской программы (М.Д. Ахундов и С.В. Илларионов). Она состоит в возможности изменения содержания "жесткого ядра": фундаментальные (важнейшие, основные) принципы по И. Локатошу, заменены на базисные – более обобщенные, универсальные, гибкие и изменяемые, позволяющие создавать новые научные дисциплины, направления исследования, планировать возможные открытия.

Важную роль в формировании базисных принципов "жесткого ядра" в рамках концепции физической исследовательской программы играют так называемые "затравочные образы" (С.Н. Жаров) – исходные модельные представления, формирующие первоначальную базисную структуру. В качестве "затравочных образов" (первоначальных мировоззренческих представлений) И. Ньютон использовал понятие корпускул, пустоты, абсолютного пространства и абсолютного времени, сформировавших базис его научно-исследовательской программы.

Дальнейшее развитие этих представлений привело к созданию механики материальной точки (Л. Эйлер), механики твердого тела, гидродинамики, теории машин. Эти преобразования прошли через предварительное постепенное изменение "защитного пояса" гипотез и вспомогательных теорий к новой парадигме (обновленному "жесткому ядру"), сформированному обновленными базисными теориями. Причем превращение фундаментальных представлений в базисные проходит постепенно, по мере их развития и универсализации.

При формировании методологической схемы исследования одновременно используются практически все указанные концепции. Прежде всего, определяется существующая парадигма в избранном направлении науки, формирующие ее фундаментальные принципы ("жесткое ядро"), теоретические представления, оказывающие влияние на фундаментальные теории составляющие "жесткое ядро". На основе новых научных данных, формируется его базисность, возникают новые направления исследований, новые научные методы, что, в конечном счете, приведет к очередной научной революции, изменению парадигмы, "жесткого ядра" фундаментальных и базисных теорий, "защитного пояса", оснащенного положительной и отрицательной эвристикой.

Классические представления о движении тел, основанные на трудах И. Ньютона, сформировали парадигму исследования: "жесткое ядро" фундаментальных теорий, состоящее из законов механики И. Ньютона и закона Всемирного тяготения. На этой базе формируется "защитный пояс" вспомогательных гипотез, теорий, методов, например исследования движения точки в пустоте, среде с сопротивлением (вода, воздух и т.д.). Решение этих задач обеспечило превращение фундаментальных принципов "жесткого ядра" в базисные через изменение структуры "защитного пояса". Базисность позволила применить общие принципы "жесткого ядра" к созданию механики небесных тел, гидродинамики, аэродинамики, механики твердых тел, теории упругости и т.д. Но в период "нормальной" науки произошло накопление данных, приведших к возникновению термодинамики и электродинамики, интерпретация которых в рамках механистической парадигмы оказалась невозможна.

Иначе говоря, возникли условия для новой научной революции.

Обобщая, отметим, что в научно-практической деятельности целесообразно сформировать "жесткое ядро" существующих по данной проблематике принципов, теорий, концепций; сформулировать его как парадигму, в виде обобщенного учения. Выявить более частные гипотезы, теории, принципы, сформировав "защитный пояс", применяя для уточнения методологической структуры "позитивную и негативную эвристику".

Выводы по разделу«Методология естественнонаучного познания»

Научный метод - основа естественнонаучного познания. Наука об его построении и применении называется методология. Знание основных методологических принципов позволяет всесторонне сформировать метод исследования той или иной научной проблемы.

Важную роль в создании метода исследования играет его логическое построение, основанное на классических концепциях Т. Куна, И. Локатоша, К. Поппера, М.Д. Ахундова и С.В. Илларионова.

Метод научного познания представляет собой стройную систему последовательного изучения и теоретического осмысления неизвестного явления природы.

Вопросы для самоконтроля

1. Что является основой современного научного познания?

а) естественнонаучный подход

б) эмпирические исследования

в) теологические исследования

г) научно – фантастические произведения

2. В чем состоит метод научного познания?

а) система действий, приводящая к неоднозначному результату

б) система действий, приводящая к общим теологическим выводам

в) система действий, приводящая к заданному, ожидаемому результату.

г) отдельные действия, несвязанные между собой общей системой

3. В чем сущность методологии научного познания?

а) в изучении отдельных явлений природы применяя микроскопию.

б) в изучении принципов, форм и способов (методов) организации научной деятельности: теоретических и экспериментальных исследований.

в) в изучении особенностей построения теории.

г) в исследовании древних литературных источников и обобщении полученных результатов.

4. Что есть истина, согласно учению Рене Декарта?

а) получения обязательно достоверных научных знаний, с научным фактом, как объектом изучения.

б) получение субъективных данных, основанных на современных методах научного исследования.

в) общие выводы, на основе обобщения исторических знаний

г) обобщенная информация, полученная наиболее авторитетными учеными.

5. Что, с точки зрения Декарта представляет собой достоверность?

а) максимально возможная, в данных условиях проверяемость научных фактов.

б) неопровержимость фактов на данной территории.

в) периодическая повторяемость результатов на избранном лабораторном оборудовании.

г) многократно подтвержденная истина в различных литературных источниках.

6. Что такое научный факт?

а) событие, существующее в нашем мире с точки зрения современных ученых.

б) событие, существующее независимо от наших ощущений и возможностей его изучения.

в) событие, о котором говорится в теологической литературе.

г) событие, которое не существует, но может произойти.

а) методы теоретического осмысления состояния объекта, его основных характеристик.

б) методы непосредственного получения информации об объекте исследования путем проведения с объектом практических действий.

в) методы получения информации путем обмена мнениями с ведущими специалистами в избранной отрасли.

г) методы теологического исследования проблемы.

8. В чем отличие наблюдения от эксперимента?

а) в предварительном определении результата наблюдения.

б) в разработке надежных теоретических представлений о результате эксперимента.

в) отличий наблюдения от эксперимента нет. Это синонимы.

г) в целенаправленном изучении объектов или явлений окружающего нас мира при проведении эксперимента.

9. Что представляют собой теоретические методы?

а) исследование объекта с применением самого современного оборудования.

б) теологическое направление обсуждения проблемы с ведущими учеными.

в) интеллектуальные методы обобщения научных знаний, создания гипотез и теорий.

г) наблюдение за явлением природы и последующее его описание.

10. Что такое формализация?

а) разработка системы формального представления того или иного природного исследования.

б) отображение результатов экспериментов или наблюдений в виде системы обобщающих определений, утверждений или выводов;

в) разработка формальных пределов применения того или иного метода исследования.

г) создание новых представлений в науке, новых методов исследования.

11. Что означает термин «аксиоматизация»?

а) формирование теоретических преставлений на основе предварительного обсуждения результатов экспериментов.

б) философская теория, означающая разностороннее изучение проблемы.

в) формирование теоретических построений на основе аксиом – утверждений, не требующих доказательств.

г) толкование того или иного природного явления на основе чисто теоретических представлений.

12. Что такое гипотетико – дедуктивный метод?

а) метод, состоящий в выдвижении каких-либо гипотез и их последующей логической и эмпирической проверки.

б) метод поведения анализа и синтеза.

в) метод верификации научных данных.

г) метод моделирования какого-либо процесса или явления.

13. Что составляет главную цель научного исследования?

а) создание основных положений методологии научного познания.

б) создание принципов построения научных исследований.

в) разработка гипотезы течения процесса или явления.

г) формирование обобщенной теории, основанной на результатах системных экспериментов.

14. В чем состоит теория американского историка Т. Куна?

а) в создании теоретического метода теории познания.

б) в разработке теории анализа и синтеза.

в) в создании единой системы научных взглядов, общей для ученых всего мира.

г) в чередовании периодов «научных революций» и периодов накопления научных фактов.

15. В чем состоит концепция И. Лакатоша?

а) в отрицании возможности систематизации научного исследования.

б) в создании новой наглядной модели построения эмпирического исследования.

в) в разработке научно – исследовательских программ по фундаментальным проблемам науки.

г) в формировании концепции изучения Вселенной.

Научное исследование осуществляется путем использования особых приемов - методов.

Методы науки - совокупность приемов и операций практического и теоретического познания действительности.

Выделяют общие, частные и особенные методы научного исследования.

Общие методы познания касаются любой дисциплины и дают возможность соединить все этапы процесса познания. В истории науки исследователи к таким методам относят метафизический и диалектический методы.

Частные методы научного познания - это методы, применяющиеся только в отдельной отрасли науки. Различные методы естествознания (физики, химии, биологии, экологии и т. д.) являются частными по отношению к общему диалектическому методу познания. Иногда частные методы могут использоваться за пределами тех отраслей естествознания, в которых они возникли. Например, физические и химические методы используются в астрономии, биологии, экологии.

Особенные методы исследуют определенные признаки изучаемого объекта. Они могут проявляться на эмпирическом и на теоретическом уровнях познания и быть универсальными.

Среди особенных эмпирических методов познания выделяют наблюдение, измерение и эксперимент.

Наблюдение представляет собой целенаправленный процесс восприятия предметов действительности, чувственное отражение объектов и явлений, в ходе которого человек получает первичную информацию об окружающем мире. Поэтому исследование чаще всего начинается с наблюдения, и лишь потом исследователи переходят к другим методам. Наблюдения используются там, где нельзя поставить прямой эксперимент (в вулканологии, космологии). Результаты наблюдения фиксируются в описании, отмечающем те признаки и свойства изучаемого объекта, которые являются предметом изучения. Именно описания результатов наблюдения составляют эмпирический базис науки, на их основе создаются эмпирические обобщения.

Измерение - это определение количественных значений (характеристик) изучаемых сторон или свойств объекта с помощью специальных технических устройств. Большую роль в исследовании играют единицы измерения, с которыми сравниваются полученные данные.

Эксперимент - целенаправленное и строго контролируемое воздействие исследователя на интересующий объект или явление для изучения его различных сторон, связей и отношений.

В ходе экспериментального исследования ученый вмешивается в естественный ход процессов, преобразует объект исследования. Специфика эксперимента состоит также в том, что он позволяет увидеть объект или процесс в чистом виде. Это происходит за счет максимального исключения воздействия посторонних факторов. Экспериментатор отделяет существенные факты от несущественных и тем самым значительно упрощает ситуацию.

В любом естественнонаучном эксперименте выделяют такие этапы: подготовительный этап; этап сбора экспериментальных данных; этап обработки результатов.

Для повышения достоверности полученных результатов эксперимента необходимы: многократная повторность измерений; совершенствование технических средств и приборов; строгий учет факторов, влияющих на исследуемый объект; четкое планирование эксперимента, позволяющее учесть специфику исследуемого объекта.

Средиособенных теоретических методов научного познания выделяют процедуры абстрагирования и идеализации. В процессах абстрагирования и идеализации формируются понятия и термины, используемые во всех теориях.

Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые считают несущественными. Таковы модели точки, прямой линии, окружности, плоскости. Результат процесса абстрагирования называется абстракцией. Реальные объекты в каких-то задачах могут быть заменены этими абстракциями (Землю при движении вокруг Солнца можно считать материальной точкой, но нельзя при движении по ее поверхности).

Идеализация представляет операцию мысленного выделения какого-то одного важного для данной теории свойства или отношения, мысленного конструирования объекта, наделенного этим свойством (отношением). В результате идеальный объект обладает только этим свойством (отношением). Наука выделяет в реальной действительности общие закономерности, которые существенны и повторяются в различных предметах, поэтому приходится идти на отвлечения от реальных объектов. Так образуются такие понятия, как «атом», «множество», «абсолютно черное тело», «идеальный газ», «сплошная среда».

Среди особенных универсальных методов исследований выделяют анализ, синтез, сравнение, классификацию, аналогию, моделирование.

Анализ - метод научного познания, в основе которого лежит процедура мысленного или реального разделения объекта на составляющие его части и их отдельное изучение. Невозможно познать сущность объекта, только выделяя в нем элементы, из которых он состоит. Когда путем анализа частности исследуемого объекта изучены, он дополняется синтезом.

Синтез - метод научного познания, в основе которого лежит объединение выделенных анализом элементов. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единственных знаний, полученных с помощью анализа. Он показывает место и роль каждого элемента в системе, их связь с другими составными частями.

Анализ и синтез берут свое начало в практической деятельности человека. Человек научился мысленно анализировать и синтезировать лишь на основе практического разделения, постепенно осмысливая то, что происходит с объектом при выполнении практических действий с ним, человек учился мысленно анализировать и синтезировать.

Сравнение - метод научного познания, позволяющий установить сходство и различие изучаемых объектов. Сравнение лежит в основе многих естественнонаучных измерений, составляющих неотъемлемую часть любых экспериментов. Сравнивая объекты между собой, человек получает возможность правильно познавать их и тем самым правильно ориентироваться в окружающем мире, целенаправленно воздействовать на него.

Классификация - метод научного познания, который объединяет в один класс объекты, максимально сходные друг с другом в существенных признаках. Классификация позволяет свести накопленный многообразный материал к сравнительно небольшому числу классов, типов и форм и выявить исходные единицы анализа, обнаружить устойчивые признаки и отношения.

Аналогия - метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо объекта, на другой, менее изученный, но схожий с первым по каким-то существенным свойствам. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, причем сходство устанавливается в результате сравнения предметов между собой. Таким образом, в основе метода аналогии лежит метод сравнения.

Метод аналогии тесно связан с методом моделирования, который представляет собой изучение каких-либо объектов с помощью моделей с дальнейшим переносом полученных данных на оригинал.

В современных исследованиях используют различные виды моделирования: предметное, мысленное, символическое, компьютерное. Предметное моделирование представляет собой использование моделей, воспроизводящих определенные характеристики объекта. Мысленное моделирование представляет собой использование различных мысленных представлений в форме воображаемых моделей. Символическое моделирование использует в качестве моделей чертежи, схемы, формулы. В них в символико-знаковой форме отражаются определенные свойства оригинала. Видом символического моделирования является математическое моделирование, производимое средствами математики и логики. Оно предполагает формирование систем уравнений, которые описывают исследуемое природное явление, и их решение при различных условиях. Компьютерное моделирование получило широкое распространение в последнее время.

Метод есть совокупность правил, приемов познавательной и практической деятельности, обусловленных природой и закономерностями исследуемого объекта.

Современная система методов познания отличается высокой сложностью и дифференцированностью. Наиболее простая классификация методов познания предполагает их разделение на всеобщие, общенаучные, конкретно-научные.

1. Всеобщие методы характеризуют приемы и способы иссле­дования на всех уровнях научного познания. К ним относятся методы анализа, синтеза, ин­дукции, дедукции, сравнения, идеализации и т.д. Эти методы настолько универсальны, что работают даже на уровне обыденного сознания.

Анализ представляет собой процедуру мысленного (или реального) расчленения, разложения объекта на составные элементы в целях выявления их сис­темных свойств и отношений.

Синтез - операция соединения выделенных в анализе элементов изучаемого объекта в единое целое.

Индукция - способ рассуждения или метод получения знания, при котором общий вывод делается на основе обобщения частных посылок. Индукция может быть полной и неполной. Пол­ная индукция возможна тогда, когда посылки охватывают все яв­ления того или иного класса. Однако такие случаи встречаются редко. Невозможность учесть все явления данного класса заставля­ет использовать неполную индукцию, конечные выводы которой, не имеют строго однозначного характера.

Дедукция - способ рассуждения или метод движения знания от общего к частному, т.е. процесс логического перехода от об­щих посылок к заключениям о частных случаях. Дедуктивный метод может давать строгое, досто­верное знание при условии истинности общих посылок и соблю­дении правил логического вывода.

Аналогия - прием познания, при котором наличие сходства признаков нетождественных объектов, позволяет предположить их сходство и в других признаках. Так, обнаруженные при изучении света явления интерференции и дифракции позво­лили сделать вывод о его волновой природе, поскольку раньше те же свойства были зафиксированы у звука, волновой характер которого был уже точно установлен. Аналогия - незаменимое средство наглядности, изобразительности мышления. Но еще Аристотель предупреждал, что «аналогия не есть доказательство»! Она может давать лишь предположительное знание.

Абстрагирование - прием мышления, заключающийся в от­влечении от несущественных, незначимых для субъекта познания свойств и отношений исследуемого объекта с одновременным выде­лением тех его свойств, которые представляются важными и суще­ственными в контексте исследования.

Идеализация – процесс мысленного создания понятий об идеализированных объектах, которые в реальном мире не существуют, но имеют прообраз. Примеры: идеальный газ, абсолютно черное тело.

2. Общенаучные методы – моделирование, наблюдение, эксперимент.

Исходным методом научного познания считается наблюдение , т.е. преднамеренное и целенаправленное изучение объектов, опи­рающееся на чувственные способности человека - ощущения и восприятия. В ходе наблюдения возможно получение информации лишь о внешних, поверхностных сторонах, качествах и признаках изучаемых объектов.

Итогом научных наблюдений всегда является описание иссле­дуемого объекта, фиксируемое в виде текстов, рисунков, схем, графиков, диаграмм и т.д. С развитием науки наблюдение стано­вится все более сложным и опосредованным путем использова­ния различных технических устройств, приборов, измерительных инструментов.

Еще одним важнейшим методом естественнонаучного позна­ния является эксперимент . Эксперимент - способ активного, целенаправленного исследования объектов в контро­лируемых и управляемых условиях. Эксперимент включает про­цедуры наблюдения и измерения, однако не сводится к ним. Ведь экспериментатор имеет возможность подбирать необходимые ус­ловия наблюдения, комбинировать и варьировать их, добиваясь «чистоты» проявления изучаемых свойств, а также вмешиваться в «естественное» течение исследуемых процессов и даже искусст­венно их воспроизводить.

Главной задачей эксперимента, как правило, является предсказание теории. Подобные эксперименты называют исследовательскими . Другой тип эксперимента - проверочный - предназначен для подтвержде­ния тех или иных теоретических предположений.

Моделирование - метод замещения изучаемого объекта по­добным ему по ряду интересующих исследователя свойств и ха­рактеристик. Данные, полученные при изучении модели, затем с некоторыми поправками переносятся на реальный объект. Моде­лирование применяется в основном тогда, когда прямое изучение объекта либо невозможно (очевидно, что феномен «ядерной зи­мы» в результате массированного применения ядерного оружия кроме как на модели лучше не испытывать), либо связано с не­померными усилиями и затратами. Последствия крупных вмеша­тельств в природные процессы (поворот рек, например) целесообразно сначала изучить на гидродинамических моделях, а потом уже экспериментировать с реальными природными объектами.

Моделирование - метод фактически универсальный. Он может использоваться в системах самых различных уровней. Обычно выделяют такие типы моделирования, как предметное, математическое, логическое, физическое, химическое и проч. Широчайшее распространение в современных условиях получи­ло компьютерное моделирование.

3. Конкретно-научные методы представляют собой системы сформулированных принципов конкретных научных теорий. Н: психоаналитический метод в психологии, метод морфофизиологических индикаторов в биологии и т.д.

В основе методов естествознания лежит единство его эмпирической и теоретической сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв, или преимущественное развитие одной за счет другой, закрывает путь к правильному познанию природы - теория становится беспредметной, опыт - слепым.

Методы естествознания могут быть подразделены на следующие группы:

  • 1. Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.
  • 2. Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования:

анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент.

В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланированному образцу.

Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс.

Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в «чистом» виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины.

Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в области физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете.

Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Моделирование - метод научного познания, основанный на изучении каких-либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмешательства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на другой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моделью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание.

Таким образом, сущность моделирования как метода познания заключается в замещении объекта исследования моделью, причем в качестве модели могут быть использованы объекты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений.

Основными элементами естествознания являются:

  • · твердо установленные факты;
  • · закономерности, обобщающие группы фактов;
  • · теории, как правило, представляющие собой системы закономерностей, в совокупности описывающих некий фрагмент реальности;
  • · научные картины мира, рисующие обобщенные образы всей реальности, в которых сведены в некое системное единство все теории, допускающие взаимное согласование.

Проблема различия теоретического и эмпирического уровней научного познания коренится в разнице способов идеального воспроизведения объективной реальности, подходов к построению системного знания. Отсюда вытекают и другие, уже производные отличия этих двух уровней. За эмпирическим знанием, в частности, исторически и логически закрепилась функция сбора, накопления и первичной рациональной обработки данных опыта. Его главная задача -- фиксация фактов. Объяснение же, интерпретация их -- дело теории.

Методологические программы сыграли свою важную историческую роль. Во-первых, они стимулировали огромное множество конкретных научных исследований, а во-вторых, «высекли искру» некоторого понимания структуры научного познания. Выяснилось, что оно как бы «двухэтажно». И хотя занятый теорией «верхний этаж» вроде бы надстроен над «нижним» (эмпирией) и без последнего должен рассыпаться, но между ними почему-то нет прямой и удобной лестницы. Из нижнего этажа на верхний можно попасть только «скачком» в прямом и переносном смысле. При этом, как бы ни была важна база, основа (нижний эмпирический этаж нашего знания), решения, определяющие судьбу постройки, принимаются все-таки наверху, во владениях теории.

В наше время стандартная модель строения научного знания выглядит примерно так. Познание начинается с установления путем наблюдения или экспериментов различных фактов. Если среди этих фактов обнаруживается некая регулярность, повторяемость, то в принципе можно утверждать, что найден эмпирический закон, первичное эмпирическое обобщение. И все бы хорошо, но, как правило, рано или поздно отыскиваются такие факты, которые никак не встраиваются в обнаруженную регулярность. Тут на помощь призывается творческий интеллект ученого, его умение мысленно перестроить известную реальность так, чтобы выпадающие из общего ряда факты вписались, наконец, в некую единую схему и перестали противоречить найденной эмпирической закономерности.

Обнаружить эту новую схему наблюдением уже нельзя, ее нужно придумать, сотворить умозрительно, представив первоначально в виде теоретической гипотезы. Если гипотеза удачна и снимает найденное между фактами противоречие, а еще лучше -- позволяет предсказывать получение новых, нетривиальных фактов, это значит, что родилась новая теория, найден теоретический закон.

Известно, к примеру, что эволюционная теория Ч. Дарвина долгое время находилась под угрозой краха из-за распространенных в XIX в. представлений о наследственности. Считалось, что передача наследственных признаков происходит по принципу «смешивания», т.е. родительские признаки переходят к потомству в некоем промежуточном варианте. Если скрестить, допустим, растения с белыми и красными цветками, то у полученного гибрида цветки должны быть розовыми. В большинстве случаев так оно и есть. Это эмпирически установленное обобщение на основе множества совершенно достоверных эмпирических фактов.

Но из этого, между прочим, следовало, что все наследуемые признаки при скрещивании должны усредняться. Значит, любой, даже самый выгодный для организма признак, появившийся в результате мутации (внезапного изменения наследственных структур), со временем должен исчезнуть, раствориться в популяции. А это в свою очередь доказывало, что естественный отбор работать не должен! Британский инженер Ф. Дженкин доказал это строго математически. Ч. Дарвину данный «кошмар Дженкина» отравлял жизнь с 1867 г., но убедительного ответа он так и не нашел. (Хотя ответ уже был найден. Дарвин просто о нем не знал.)

Дело в том, что из стройного ряда эмпирических фактов, рисующих убедительную в целом картину усреднения наследуемых признаков, упорно выбивались не менее четко фиксируемые эмпирические факты иного порядка. При скрещивании растений с красными и белыми цветками, пусть не часто, но все равно будут появляться гибриды с чисто белыми или красными цветками. Однако при усредняющем наследовании признаков такого просто не может быть -- смешав кофе с молоком, нельзя получить черную или белую жидкость! Обрати Ч. Дарвин внимание на это противоречие, наверняка, к его славе прибавилась бы еще и слава создателя генетики. Но не обратил. Как, впрочем, и большинство его современников, считавших это противоречие несущественным. И зря.

Ведь такие «выпирающие» факты портили всю убедительность эмпирического правила промежуточного характера наследования признаков. Чтобы эти факты вписать в общую картину, нужна была какая-то иная схема механизма наследования. Она не обнаруживалась прямым индуктивным обобщением фактов, не давалась непосредственному наблюдению. Ее нужно было «узреть умом», угадать, вообразить и соответственно сформулировать в виде теоретической гипотезы.

Эту задачу, как известно, блестяще решил Г. Мендель. Суть предложенной им гипотезы можно выразить так: наследование носит не промежуточный, а дискретный характер. Наследуемые признаки передаются дискретными частицами (сегодня мы называем их генами). Поэтому при передаче факторов наследственности от поколения к поколению идет их расщепление, а не смешивание. Эта гениально простая схема, развившаяся впоследствии в стройную теорию, объяснила разом все эмпирические факты. Наследование признаков идет в режиме расщепления, и поэтому возможно появление гибридов с «несмешивающимися» признаками. А наблюдаемое в большинстве случаев «смешивание» вызвано тем, что за наследование признака отвечает, как правило, не один, а множество генов, что и «смазывает» менделевское расщепление. Принцип естественного отбора был спасен, «кошмар Дженкина» рассеялся.

Таким образом, традиционная модель строения научного знания предполагает движение по цепочке: установление эмпирических фактов -- первичное эмпирическое обобщение -- обнаружение отклоняющихся от правила фактов -- изобретение теоретической гипотезы с новой схемой объяснения -- логический вывод (дедукция) из гипотезы всех наблюдаемых фактов, что и является ее проверкой на истинность. Подтверждение гипотезы конституирует ее в теоретический закон. Такая модель научного знания называется гипотетико-дедуктивной. Считается, что большая часть современного научного знания построена именно таким способом.