Электрохимические методы химического анализа. Электрохимические методы исследования состава вещества. Список использованной литературы

«Электрохимические методы анализа и их современное аппаратурное оформление: обзор WEB–сайтов фирм–продавцов химико-аналитического оборудования»

Введение

Глава 1. Классификация электрохимических методов

1.1 Вольтамперометрия

1.2 Кондуктометрия

1.3 Потенциометрия

1.4 Амперометрия

1.5 Кулонометрия

1.6 Другие электрохимические явления и методы

1.7 Прикладная электрохимия

Глава 2. Электрохимические методы анализа и их роль в охране окружающей среды

Глава 3. Приборы на основе электрохимических методов анализа

Глава 4. Обзор WEB – сайтов фирм – продавцов химико-аналитического оборудования

Литература

ВВЕДЕНИЕ

Электрохимические методы анализа (электроанализ), в основе которых лежат электрохимические процессы, занимают достойное место среди методов контроля состояния окружающей среды, так как способны обеспечить определение огромного числа как неорганических, так и органических экологически опасных веществ. Для них характерны высокая чувствительность и селективность, быстрота отклика на изменение состава анализируемого объекта, легкость автоматизации и возможность дистанционного управления. И, наконец, они не требуют дорогостоящего аналитического оборудования и могут применяться в лабораторных, производственных и полевых условиях. Непосредственное отношение к рассматриваемой проблеме имеют три электроаналитических метода: вольтамперометрия, кулонометрия и потенциометрия.

ГЛАВА 1. КЛАССИФИКАЦИЯ ЭЛЕКТРОХИМИЧЕСКИХ МЕТОДОВ

Электрохимические методы анализа (ЭМА) основаны на исследовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Аналитическим сигналом служит электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией определяемого компонента раствора и поддающийся правильному измерению.

Классификация ЭМА, предлагаемая ИЮПАК, за последние десятилетия претерпела определенные изменения, в нее внесены уточнения (пояснения) и дополнения.

Существенное внимание уделяется электрохимическим ячейкам и датчикам аналитического сигнала (электродным системам, различным электрохимическим сенсорам), именно эти первичные электрохимические преобразователи определяют аналитические возможности любого метода. В настоящее время не представляет проблемы самая совершенная и быстрая обработка сигнала от датчика, расчет статистических характеристик как исходного сигнала, так и результатов всего анализа в целом. Именно поэтому важно получить достоверный исходный сигнал, чтобы прокалибровать его в единицах концентрации.

Согласно общей классификации, предложенной

ИЮПАК, ЭМА подразделяются на методы, в которых возбуждаемый электрический сигнал постоянен или равен нулю и на методы, в которых возбуждаемый сигнал меняется во времени. Эти методы классифицируются следующим образом:

вольтамперометрические – voltammetry, I ≠ 0; E = f(t) ;

потенциометрические potentiometry, (I = 0);

амперометрические amperometry (I ≠ 0; E = const);

хронопотенциометрические, E = f(t) ; I = const;

импедансные, или кондуктометрические - измерения, использующие наложение переменного напряжения малой амплитуды; другие, комбинированные (например, спектроэлектрохимические).

1.1 ВОЛЬТАМПЕРОМЕТРИЯ

ВОЛЬТАМПЕРОМЕТРИЯ - совокупность электрохимических методов исследования и анализа, основанных на изучении зависимости силы тока в электролитические ячейке от потенциала погруженного в анализируемый раствор индикаторного микроэлектрода, на котором реагирует исследуемое электрохимически активное (электроактивное) вещество. В ячейку помещают помимо индикаторного вспомогательный электрод со значительно большей поверхностью, чтобы при прохождении тока его потенциал практически не менялся (неполяризующийся электрод). Разность потенциалов индикаторного и вспомогательного электродов Е описывается уравнением Е = U - IR, где U - поляризующее напряжение, R-сопротивление раствора. В анализируемый раствор вводят в большой концентрации индифферентный электролит (фон), чтобы, во-первых, уменьшить величину R и, во-вторых, исключить миграционный ток, вызываемый действием электрического поля на электроактивные вещества (устар. - деполяризаторы). При низких концентрациях этих веществ омическое падение напряжения IR в растворе очень мало. Для полной компенсации омического падения напряжения применяют потенциостатирование и трехэлектродные ячейки, содержащие дополнительно электрод сравнения. В этих условиях

В качестве индикаторных микроэлектродов используют стационарные и вращающиеся - из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия). Последние представляют собой капилляры, из которых по каплям вытекает жидкий металл. Вольтамперометрия с использованием капающих электродов, потенциал которых меняется медленно и линейно, наз. полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, напр. каломельный или хлоросеребряный (см. Электроды сравнения). Кривые зависимости I =f(E) или I =f(U) (вольтамперограммы) регистрируют специальными приборами - полярографами разных конструкций.

Вольтамперограммы, полученные с помощью вращающегося или капающего электрода при монотонном изменении (линейной развертке) напряжения, имеют вид, схематически представленный на рисунке. Участок увеличения тока наз. волной. Волны м. б. анодными, если электроактивное вещество окисляется, или катодными, если оно восстанавливается. Когда в растворе присутствуют окисленная (Ох) и восстановленная (Red) формы вещества, достаточно быстро (обратимо) реагирующие на микроэлектроде, на вольтамперограмме наблюдается непрерывная катодно-анодная волна, пересекающая ось абсцисс при потенциале, соответствующем окислительно-восстановитановительному потенциалу системы Ox/Red в данной среде. Если электрохимическая реакция на микроэлектроде медленная (необратимая), на вольтамперограмме наблюдаются анодная волна окисления восстановленной формы вещества и катодная волна восстановления окисленной формы (при более отрицат. потенциале). Образование площадки предельного тока на вольтамперограмме связано либо с ограниченной скоростью массопереноса электроактивного вещества к поверхности электрода путем конвективной диффузии (предельный диффузионный ток, I d), либо с ограниченной скоростью образования электроактивного вещества из определяемого компонента в растворе. Такой ток называется предельным кинетическим, а его сила пропорциональна концентрации этого компонента.

Форма волны для обратимой электрохимические реакции описывается уравнением:

где R-газовая постоянная, Т-абсолютная температура, E 1/2 -потенциал полуволны, т.е. потенциал, соответствующий половине высоты волны (I d /2;). Значение E 1/2 характерно для данного электроактивного вещества и используется для его идентификации. Когда электрохимические реакции предшествует адсорбция определяемого вещества на поверхности электрода, на вольтамперограммах наблюдаются не волны, а пики, что связано с экстремальной зависимостью адсорбции от потенциала электрода. На вольтамперограммах, зарегистрированных при линейном изменении (развертке) потенциала со стационарным электродом или на одной капле капающего электрода (устар. - осциллографич. полярограмме), также наблюдаются пики, нисходящая ветвь которых определяется обеднением приэлектродного слоя раствора электроактивным веществом. Высота пика при этом пропорциональна концентрации электроактивного вещества. В полярографии предельный диффузионный ток (в мкА), усредненный по времени жизни капли, описывается уравнением Ильковича:

где n-число электронов, участвующих в электрохимической реакции, С-концентрация электроактивного вещества (мМ), D-eгo коэффициент диффузии (см 2 /с),время жизни ртутной капли (с), m-скорость вытекания ртути (мг/с).

С вращающимся дисковым электродом предельный диффузионный ток рассчитывают по уравнению:

где S-площадь поверхности электрода (см 2),-круговая частота вращения электрода (рад/с), v-кинематическая вязкость раствора (см 2 /с), F-число Фарадея (Кл/моль).

Циклическая вольтамперометрия (вольтамперометрия с относительно быстрой треугольной разверткой потенциала) позволяет изучать кинетику и механизм электродных процессов путем наблюдения на экране осциллографической трубки с послесвечением одновременно вольтамперограмм с анодной и катодной разверткой потенциала, отражающих, в частности, и электрохимические реакции продуктов электролиза.

Нижняя граница определяемых концентраций С н в методах В. с линейной разверткой потенциала составляет 10 -5 -10 -6 М. Для ее снижения до 10-7 -10 -8 М используют усовершенствованные инструментальные варианты - переменно-токовую и дифференциальную импульсную вольтамперометрию.

В первом из этих вариантов на постоянную составляющую напряжения поляризации налагают переменную составляющую небольшой амплитуды синусоидальной, прямоугольной (квадратноволновая вольтамперометрия), трапециевидной или треугольной формы с частотой обычно в интервале 20-225 Гц. Во втором варианте на постоянную составляющую напряжения поляризации налагают импульсы напряжения одинаковой величины (2-100 мВ) длительностью 4-80 мс с частотой, равной частоте капания ртутного капающего электрода, или с частотой 0,3-1,0 Гц при использовании стационарных электродов. В обоих вариантах регистрируют зависимость от U или Е переменной составляющей тока с фазовой или временной селекцией. Вольтамперограммы при этом имеют вид первой производной обычной вольтамперометрической волны. Высота пика на них пропорциональна концентрации электроактивного вещества, а потенциал пика служит для идентификации этого вещества по справочным данным.

Пики различных электроактивных веществ, как правило, лучше разрешаются, чем соответствующие вольтамперометрические волны, причем высота пика в случае необратимой электрохимической реакции в 5-20 раз меньше высоты пика в случае обратимой реакции, что также обусловливает повышенную разрешающую способность этих вариантов вольтамперометрии. Например, необратимо восстанавливающийся кислород практически не мешает определению электроактивных веществ методом переменно-токовой вольтамперометрии. Пики на переменно-токовых вольтамперограммах отражают не только электрохимические реакции электроактивных веществ, но и процессы адсорбции - десорбции неэлектроактивных веществ на поверхности электрода (пики нефарадеевского адмиттанса, устар. - тенсамметрич. пики).

Для всех вариантов вольтамперометрии используют способ снижения С н, основанный на предварительном электрохимическом, адсорбционном или химическом накоплении определяемого компонента раствора на поверхности или в объеме стационарного микроэлектрода, с последующей регистрацией вольтамперограммы, отражающей электрохимическую реакцию продукта накопления. Эту разновидность вольтамперометрии называют инверсионной (устар. название инверсионной В. с накоплением на стационарном ртутном микроэлектроде - амальгамная полярография с накоплением). В инверсионной вольтамперометрии с предварительным накоплением С н достигает 10 -9 -10 -11 М. Минимальные значения С н получают, используя тонкопленочные ртутные индикаторные электроды, в т.ч. ртутно-графитовые, состоящие из мельчайших капелек ртути, электролитически выделенных на подложку из специально обработанного графита.

Для фазового и элементного анализа твердых тел используют инверсионную вольтамперометрию с электроактивными угольными электродами (т. наз. минерально-угольными пастовыми электродами). Их готовят из смеси угольного порошка, исследуемого порошкообразного вещества и инертного связующего, напр. вазелинового масла. Разработан вариант этого метода, который дает возможность проводить анализ и определять толщину металлических покрытий. В этом случае используют специальное устройство (прижимная ячейка), позволяющее регистрировать вольтамперограмму, пользуясь каплей фонового электролита, нанесенного на исследуемую поверхность.

Применение

Вольтамперометрию применяют: для количественного анализа неорганических и органических веществ в очень широком интервале содержаний - от 10 -10 % до десятков %; для исследования кинетики и механизма электродных процессов, включая стадию переноса электрона, предшествующие и последующие химические реакции, адсорбцию исходных продуктов и продуктов электрохимических реакций и т. п.; для изучения строения двойного электрического слоя с, равновесия комплексообразования в растворе, образования и диссоциации интерметаллических соединений в ртути и на поверхности твердых электродов; для выбора условий амперометрического титрования и др.

1.2 Кондуктометрия

Кондуктометрия - основана на измерении электропроводности раствора и применяется для определения концентрации солей, кислот, оснований и т.д. При кондуктометрических определениях обычно используют электроды из одинаковых материалов, а условия их проведения подбирают таким образом, чтобы свести к минимуму вклад скачков потенциала на обеих границах раздела электрод/электролит (например, используют переменный ток высокой частоты). В этом случае основной вклад в измеряемый потенциал ячейки вносит омическое падение напряжения IR, где R – сопротивление раствора. Электропроводность однокомпонентного раствора можно связать с его концентрацией, а измерение электропроводности электролитов сложного состава позволяет оценить общее содержание ионов в растворе и применяется, например, при контроле качества дистиллированной или деионизованной воды. В другой разновидности кондуктометрии – кондуктометрическом титровании – к анализируемому раствору порциями добавляют известный реагент и следят за изменением электропроводности. Точка эквивалентности, в которой отмечается резкое изменение электропроводности, определяется из графика зависимости этой величины от объема добавленного реагента.

1.3 Потенциометрия

Потенциометрия - применяется для определения различных физико-химических параметров исходя из данных о потенциале гальванического элемента. Электродный потенциал в отсутствие тока в электрохимической цепи, измеренный относительно электрода сравнения, связан с концентрацией раствора уравнением Нернста. В потенциометрических измерениях широко применяются ионоселективные электроды, чувствительные преимущественно к какому-то одному иону в растворе: стеклянный электрод для измерения рН и электроды для селективного определения ионов натрия, аммония, фтора, кальция, магния и др. В поверхностный слой ионоселективного электрода могут быть включены ферменты, и в результате получается система, чувствительная к соответствующему субстрату. Отметим, что потенциал ионоселективного электрода определяется не переносом электронов, как в случае веществ с электронной проводимостью, а в основном переносом или обменом ионов. Однако уравнение Нернста, связывающее электродный потенциал с логарифмом концентрации (или активности) вещества в растворе, применимо и к такому электроду. При потенциометрическом титровании реагент добавляют в анализируемый раствор порциями и следят за изменением потенциала. S-образные кривые, характерные для такого типа титрования, позволяют определить точку эквивалентности и найти такие термодинамические параметры, как константа равновесия и стандартный потенциал.

1.4 Амперометрия

Метод основан на измерении предельного диффузионного тока, проходящего через раствор при фиксированном напряжении между индикаторным электродом и электродом сравнения. При амперометрическом титровании точку эквивалентности определяют по излому кривой ток – объем добавляемого рабочего раствора. Хроноамперометрические методы основаны на измерении зависимости тока от времени и применяются в основном для определения коэффициентов диффузии и констант скорости. По принципу амперометрии (как и вольтамперометрии) работают миниатюрные электрохимические ячейки, служащие датчиками на выходе колонок жидкостных хроматографов. Гальваностатические методы аналогичны амперометрическим, но в них измеряется потенциал при прохождении через ячейку тока определенной величины. Так, в хронопотенциометрии контролируется изменение потенциала во времени. Эти методы применяются главным образом для изучения кинетики электродных реакций.

1.5 Кулонометрия.

В кулонометрии при контролируемом потенциале проводят полный электролиз раствора, интенсивно перемешивая его в электролизере с относительно большим рабочим электродом (донная ртуть или платиновая сетка). Полное количество электричества (Q, Кл), необходимое для электролиза, связано с количеством образующего вещества (А, г) законом Фарадея:

где M – мол. масса (г/моль), F  число Фарадея. Кулонометрическое титрование заключается в том, что при постоянном токе электролитически генерируют реактив, вступающий во взаимодействие с определяемым веществом. Ход титрования контролируют потенциометрически или амперометрически. Кулонометрические методы удобны тем, что являются по своей природе абсолютными (т.е. позволяют рассчитать количество определяемого вещества, не прибегая к калибровочным кривым) и нечувствительны к изменению условий электролиза и параметров электролизера (площади поверхности электрода или интенсивности перемешивания). При кулоногравиметрии количество вещества, подвергшегося электролизу, определяют взвешиванием электрода до и после электролиза.

Существуют и другие электроаналитические методы. В переменно-токовой полярографии на линейно меняющийся потенциал налагают синусоидальное напряжение малой амплитуды в широкой области частот и определяют либо амплитуду и фазовый сдвиг результирующего переменного тока, либо импеданс. Из этих данных получают информацию о природе веществ в растворе и о механизме и кинетике электродных реакций. В тонкослойных методах используются электрохимические ячейки со слоем электролита толщиной 10–100 мкм. В таких ячейках электролиз идет быстрее, чем в обычных электролизерах. Для изучения электродных процессов применяют спектрохимические методы со спектрофотометрической регистрацией. Для анализа веществ, образующихся на поверхности электрода, измеряют поглощение ими света в видимой, УФ- и ИК-областях. За изменением свойств поверхности электрода и среды следят с помощью методов электроотражения и эллипсометрии, которые основаны на измерении отражения излучения от поверхности электрода. К ним относятся методы зеркального отражения и комбинационного рассеяния света (рамановская спектроскопия), спектроскопия второй гармоники (фурье-спектроскопия).

1.6 Другие электрохимические явления и методы

При относительном движении электролита и заряженных частиц или поверхностей возникают электрокинетические эффекты. Важным примером такого рода является электрофорез, при котором происходит разделение заряженных частиц (например, молекул белка или коллоидных частиц), движущихся в электрическом поле. Электрофоретические методы широко используют для разделения белков или дезоксирибонуклеиновых кислот (ДНК) в геле. Электрические явления играют большую роль в функционировании живых организмов: они отвечают за генерацию и распространение нервных импульсов, возникновение трансмембранных потенциалов и т.д. Различные электрохимические методы применяются для изучения биологических систем и их компонентов. Представляет интерес и изучение действия света на электрохимические процессы. Так, предметом фотоэлектрохимических исследований являются генерация электрической энергии и инициация химических реакций под действием света, что весьма существенно для повышения эффективности преобразования солнечной энергии в электрическую. Здесь обычно используются полупроводниковые электроды из диоксида титана, сульфида кадмия, арсенида галлия и кремния. Еще одно интересное явление – электрохемилюминесценция, т.е. генерация света в электрохимической ячейке. Оно наблюдается, когда на электродах образуются высокоэнергетические продукты. Часто процесс проводят в циклическом режиме, чтобы получить как окисленную, так и восстановленную формы данного соединения. Взаимодействие их между собой приводит к образованию возбужденных молекул, которые переходят в основное состояние с испусканием света.

1.7 Прикладная электрохимия

Электрохимия имеет много практических применений. При помощи первичных гальванических элементов (элементов одноразового действия), соединенных в батареи, преобразуют химическую энергию в электрическую. Вторичные источники тока – аккумуляторы – запасают электрическую энергию. Топливные элементы – первичные источники тока, которые генерируют электричество благодаря непрерывной подаче реагирующих веществ (например, водорода и кислорода). Эти принципы лежат в основе портативных источников тока и аккумуляторов, применяющихся на космических станциях, в электромобилях и электронных приборах.

На электрохимическом синтезе основано крупнотоннажное производство многих веществ. При электролизе рассола в хлорщелочном процессе образуются хлор и щелочь, которые затем применяются для получения органических соединений и полимеров, а также в целлюлозно-бумажной промышленности. Продуктами электролиза являются такие соединения, как хлорат натрия, персульфат, перманганат натрия; электроэкстракцией получают важные в промышленном отношении металлы: алюминий, магний, литий, натрий и титан. В качестве электролитов лучше использовать расплавы солей, поскольку в этом случае, в отличие от водных растворов, восстановление металлов не осложняется выделением водорода. Электролизом в расплаве соли получают фтор. Электрохимические процессы служат основной для синтеза некоторых органических соединений; например, гидродимеризацией акрилонитрила получают адипонитрил (полупродукт в синтезе найлона).

Широко практикуется нанесение на различные предметы гальванических покрытий из серебра, золота, хрома, латуни, бронзы и других металлов и сплавов с целью защиты изделий из стали от коррозии, в декоративных целях, для изготовления электрических разъемов и печатных плат в электронной промышленности. Электрохимические методы используются для высокоточной размерной обработки заготовок из металлов и сплавов, особенно таких, которые не удается обрабатывать обычными механическими способами, а также для изготовления деталей сложного профиля. При анодировании поверхности таких металлов, как алюминий и титан, образуются защитные оксидные пленки. Такие пленки создают на поверхности заготовок из алюминия, тантала и ниобия при изготовлении электролитических конденсаторов, а иногда в декоративных целях.

Кроме того, на электрохимических методах часто базируются исследования коррозионных процессов и подбор материалов, замедляющих эти процессы. Коррозию металлических конструкций можно предотвратить с помощью катодной защиты, для чего внешний источник подсоединяют к защищаемой конструкции и аноду и поддерживают такой потенциал конструкции, при котором ее окисление исключается. Исследуются возможности практического применения других электрохимических процессов. Так, для очистки воды можно использовать электролиз. Весьма перспективное направление – преобразование солнечной энергии с помощью фотохимических методов. Разрабатываются электрохимические мониторы, принцип действия которых основан на электрохемилюминесценции.

Электрохимические методы анализа (электроанализ), в основе которых лежат электрохимические процессы, занимают достойное место среди методов контроля состояния окружающей среды, так как способны обеспечить определение огромного числа как неорганических, так и органических экологически опасных веществ. Для них характерны высокая чувствительность и селективность, быстрота отклика на изменение состава анализируемого объекта, легкость автоматизации и возможность дистанционного управления. И наконец, они не требуют дорогостоящего аналитического оборудования и могут применяться в лабораторных, производственных и полевых условиях. Непосредственное отношение к рассматриваемой проблеме имеют три электроаналитических метода: вольтамперометрия, кулонометрия и потенциометрия.

Краткая историческая справка . Начало развития электроанализа связывают с возникновением классического электрогравиметрического метода (около 1864 года, У. Гиббс). Открытие М. Фарадеем в 1834 году законов электролиза легло в основу метода кулонометрии, однако применение этого метода началось с 30-х годов ХХ века. Настоящий перелом в развитии электроанализа произошел после открытия в 1922 году Я. Гейровским метода полярографии. Полярографию можно определить как электролиз с капающим ртутным электродом. Этот метод остается одним из основных методов аналитической химии. В конце 50-х - начале 60-х годов проблема охраны окружающей среды стимулировала бурное развитие аналитической химии, и в частности электроаналитической химии, включая полярографию. В результате были разработаны усовершенствованные полярографические методы: переменнотоковая (г. Баркер, Б. Брейер) и импульсная полярография (г. Баркср, А. Гарднср), которые значительно превосходили по своим характеристикам классический вариант полярографии, предложенный Я. Гейровским. При использовании твердых электродов из различных материалов вместо ртутных (используемых в полярографии) соотвстствуюшие методы стали называться вольтамперометрическими. В конце 50-х годов работы В. Кемули и 3. Кублика положили начало методу инверсионной вольтамперометрии. Наряду с методами кулонометрии и вольтамперометрии развиваются методы, основанные на измерении электродных потенциалов и электродвижущих сил гальванических элементов, - методы потенциометрии и ионометрии (см. ).

Вольтамперометрия . Это группа методов, основанных на изучении зависимости силы тока в электролитической ячейке от величины потенциала, приложенного к погруженному в анализируемый раствор индикаторному микроэлектроду. Эти методы основаны на принципах электролиза; присутствующие в растворе определяемые вещества окисляются или восстанавливаются на индикаторном электроде. В ячейку помещают помимо индикаторного еще электрод сравнения со значительно большей поверхностью, чтобы при прохождении тока его потенциал практически не менялся. В качестве индикаторных микроэлектродов наиболее часто используют стационарные и вращающиеся электроды из платины или графита, а также ртутный капающий электрод, представляющий собой длинный узкий капилляр, на конце которого периодически образуются и отрываются небольшие ртутные капли диаметром 1-2 мм (рис. 1). Качественный и количественный составы раствора могут быть установлены из вольтамперограмм.

Рис. 4. Электрохимическая ячейка с капающим ртутным электродом: 1 - анализируемый раствор, 2 - ртутный капающий электрод, 3 - резервуар с ртутью, 4 - электрод сравнения

Вольтамперометрические методы, особенно такие чувствительные варианты, как дифференциальная импульсная полярография и инверсионная вольтамперометрия, постоянно используются во всех областях химического анализа и наиболее полезны при решении проблем охраны окружающей среды. Эти методы применимы для определения и органических и неорганических веществ, например для определения большинства химических элементов. С помощью метода инверсионной вольтамперометрии чаще всего решают проблему определения следов тяжелых металлов в водах и биологических материалах. Так, например, вольтамперометрические методики одновременного определения Си, Cd и РЬ, а также Zn и РЬ или ТI в питьевой воде включены в стандарт ФРГ. Важным достоинством вольтамперометрии является возможность идентифицировать формы нахождения ионов металлов в водах. Это позволяет оценивать качество воды, так как разные химические формы существования металлов обладают разной степенью токсичности. Из органических веществ можно определять соединения, обладающие группами, способными к восстановлению (альдегиды, кетоны, нитро -, нитрозосоединения, ненасыщенные соединения, галогенсодержащие соединения, азосоединения) или окислению (ароматические углеводороды, амины, фенолы, алифатические кислоты, спирты, серусодержашие соединения). Возможности определения органических вешеств методом инверсионной вольтамперометрии существенно расширяются при использовании химически модифицированных электродов. Модификацией поверхности электрода полимерными и неорганическими пленками, включаюшими реагенты со специфическими функциональными группами, в том числе и биомолекулы, можно создать для определяемого компонента такие условия, когда аналитический сигнал будет практически специфичным. Использование модифицированных электродов обеспечивает избирательное определение соединений с близкими окислительно-восстановительными свойствами (например, пестицидов и их метаболитов) или электрохимически неактивных на обычных электродах. Вольтамперометрию применяют для анализа растворов, но она может быть использована и для анализа газов. Сконструировано множество простых вольтамперометрических анализаторов для работы в полевых условиях.

Кулонометрия . Метод анализа, основанный на измерении количества электричества (Q), прошедшего через электролизер при электрохимическом окислении или восстановлении вещества на рабочем электроде. Согласно закону Фарадея, масса электрохимически превращенного вещества (Р) связана с Q соотношением:

P = QM / Fn ,

где М - молекулярная или атомная масса вещества, п - число электронов, вовлеченных в электрохимическое превращение одной молекулы (атома) вещества, р - постоянная Фарадея.

Различают прямую кулонометрию и кулонометрическос титрование. В первом случае определяют электрохимически активное вещество, которое осаждают (или переводят в новую степень окисления) на электроде при заданном потенциале электролиза, при этом затраченное количество электричества пропорционально количеству прореагировавшего вещества. Во втором случае в анализируемый раствор вводят электрохимически активный вспомогательный реагент, из которого электролитически генерируют титрант (кулонометрический титрант), и он количественно химически взаимодействует с определяемым веществом. Содержание определяемого компонента оценивают по количеству электричества, прошедшего через раствор при генерировании титранта вплоть до момента завершения химической реакции, который устанавливают, например, с помощью цветных индикаторов. Важно, чтобы при проведении кулонометрического анализа в исследуемом растворе отсутствовали посторонние вещества, способные вступать в электрохимические или химические реакции в тех же условиях, то есть не протекали побочные электрохимические и химические процессы.

Кулонометрию используют для определения как следовых (на уровне 109-10 R моль/л), так и весьма больших количеств веществ с высокой точностью. Кулонометрически можно определять многие неорганические (практически все металлы, в том числе тяжелые, галогены, S, NО з, N0 2) и органические вещества (ароматические амины, нитро- и нитрозосоединения, фенолы, азокрасители). Автоматические кулонометрические анализаторы для определения очень низких содержаний (до 104 %) газообразных загрязнений (S02" Оз, H 2 S, NO, N0 2) в атмосфере успешно зарекомендовали себя в полевых условиях.

Потенциометрия. Метод анализа, основанный на зависимости paвновесного электродного потенциала Е от активности а компонентов электрохимической реакции: аА + ЬВ + пе = тМ + рР.

При потенциометрических измерениях составляют гальванический элемент из индикаторного электрода, потенциал которого зависит от активности одного из компонентов раствора, и электрода сравнения и измеряют электродвижущую силу этого элемента.

Различают прямую потенциометрию и потенциометрическое титрование. Прямая потенциометрия применяется для непосредственного определения активности ионов по значению потенциала (Е) соответствующего индикаторного электрода. В методе потенциометрического титрования регистрируют изменение Е в ходе реакции определяемого компонента с подходящим титрантом.

При решении задач охраны окружающей среды наиболее важен метод прямой потенциометрии с использованием мембранных ионоселективных электродов (ИСЭ) - ионометрия. В отличие от многих других методов анализа, позволяющих оценить лишь общую концентрацию веществ, ионометрия позволяет оценить активность свободных ионов и поэтому играет большую роль в изучении распределения ионов между их различными химическими формами. Для контроля объектов окружающей среды особенно важны методы автоматизированного мониторинга, и использование ИСЭ очень удобно для этой цели.

Одним из основных показателей при характеристике состояния окружающей среды является значение рН среды, определение которого обычно проводят с помощью стеклянных электродов. Стеклянные электроды, покрытые полупроницаемой мембраной с пленкой соответствующего электролита, используют в анализе вод и атмосферы для контроля загрязнений (NН з, SO 2 NO, NO 2 , СO 2 , H 2 S). ИСЭ применяют обычно при контроле содержания анионов, для которых методов определения традиционно значительно меньше, чем для катионов. К настоящему времени разработаны и повсеместно применяются ИСЭ для определения F, СI , Вг, I , С1O 4 , CN , S 2 , NO] и NO 2 , позволяющие определять перечисленные ионы в интервале концентраций от 10 -6 до 10 -1 моль/л.

Одной из важных областей применения ионометрии являются гидрохимические исследования и определение концентрации анионов и катионов в разных типах вод (поверхностных, морских, дождевых). Другая область применения ИСЭ - анализ пищевых продуктов. Примером может служить определение NO – 3 и NO 2 - в овощах, мясных и молочных продуктах, продуктах детского питания. Создан миниатюрный ИСЭ в форме иглы для определения NO - 3 непосредственно в мякоти плодов и овощей.

Широко используется ионометрия и для определения различных биологически активных соединений и лекарственных препаратов. В настоящее время уже можно говорить, что существуют носители, селективные практически к любому типу органических соединений, а это означает что возможно создание неограниченного числа соответствующих ИСЭ. Перспективным направлением является использование ферментных электродов, в мембрану которых включены иммобилизованные ферменты. Эти электроды обладают высокой специфичностью, свойственной ферментативным реакциям. С их помощью, например, удастся определять ингибирующие холинэстеразу, инсектициды (фосфорорганические соединения, карбаматы) при концентрациях -1 нг/мл. Будущее метода связано с созданием компактных специфичных сенсоров, представляющих собой современные электронные устройства в cочетании с ионоселективными мембранами, которые позволят обходиться без разделения компонентов проб и заметно ускорят проведение анализов в полевых условиях.

Анализ сточных вод

Электроаналитические методы, которые обычно применяют в анализе воды для определения неорганических компонентов, часто уступают по чувствительности методам газовой и жидкостной хроматографии, атомно-адсорбционной спектрометрии. Однако здесь используется более дешевая аппаратура, иногда даже в полевых условиях. Основными электроаналитическими методами, применяемыми в анализе воды, являются вольтамперометрия, потенциометрия и кондуктометрия. Наиболее эффективными вольтамперометрическими методами являются дифференциальная импульсная полярография (ДИП) и инверсионный электрохимический анализ (ИЭА). Сочетание этих двух методов позволяет проводить определение с очень высокой чувствительностью - приблизительно 10 -9 моль/л, аппаратурное оформление при этом несложно, что дает возможность делать анализы в полевых условиях. На принципе использования метода ИЭА или сочетания ИЭА с ДИП работают полностью автоматизированные станции мониторинга. Методы ДИП и ИЭА в прямом варианте, а также в сочетании друг с другом используют для анализа загрязненности воды ионами тяжелых металлов, различными органическими веществами. При этом часто способы пробоподготовки являются гораздо более простыми, чем в спектрометрии или газовой хроматографии. Преимуществом метода ИЭА является (в отличие от других методов, например, атомно-адсорбционной спектрометрии) также способность “отличать” свободные ионы от их связанных химических форм, что важно и для оценки физико-химических свойств анализируемых веществ, и с точки зрения биологического контроля (например, при оценке токсичности вод). Время проведения анализа иногда сокращается до нескольких секунд за счет повышения скорости развертки поляризующего напряжения.

Потенциометрия с применением различных ионоселективных электродов используется в анализе воды для определения большого числа неорганических катионов и анионов. Концентрации, которые удается определить таким способом, 10 0 -10 -7 моль/л. Контроль с помощью ионоселективных электродов отличается простотой, экспрессностью и возможностью проведения непрерывных измерений. В настоящее время созданы ионоселективные электроды, чувствительные к некоторым органическим веществам (например, алкалоидам), поверхностно-активным веществами и моющим веществам (детергентам). В анализе воды используются компактные анализаторы типа зондов с применением современных ионоселективных электродов. При этом в ручке зонда смонтирована схема, обрабатывающая отклик, и дисплей.

Кондуктометрия используется в работе анализаторов детергентов в сточных водах, при определении концентраций синтетических удобрений в оросительных системах, при оценке качества питьевой воды. В дополнение к прямой кондуктометрии для определения некоторых видов загрязнителей могут быть использованы косвенные методы, в которых определяемые вещества взаимодействуют перед измерением со специально подобранными реагентами и регистрируемое изменение электропроводности вызывается только присутствием соответствующих продуктов реакции. Кроме классических вариантов кондуктометрии применяют и ее высокочастотный вариант (осциллометрию), в котором индикаторная электродная система реализуется в кондуктометрических анализаторах непрерывного действия.

Глава 3. Приборы на основе электрохимических методов анализа

Вольтамперометрический метод анализа сегодня считается одним из наиболее перспективных среди электрохимических методов, благодаря его широким возможностям и хорошим эксплутационным характеристикам.

Современная инверсионная вольтамперометрия, заменившая классическую полярографию, - высокочувствительный и экспрессный метод определения широкого круга неорганических и органических веществ, обладающих окислительно-восстановительными свойствами.

Это один из наиболее универсальных методов определения следовых количеств веществ, который с успехом применяется для анализа природных гео- и биологических, а также медицинских, фармацевтических и иных объектов.

Вольтамперометрические анализаторы делают возможным одновременное определение нескольких компонентов (до 4 - 5) в одной пробе с довольно высокой чувствительностью 10 -8 - 10 -2 М (а инверсионная вольтамперометрия - до 10-10 - 10 -9 М).

Наиболее перспективной в аналитической химии сегодня считается адсорбционная инверсионная вольтамперометрия, основанная на предварительном адсорбционном концентрировании определяемого элемента на поверхности электрода и последующей регистрации вольтамперограммы полученного продукта. Таким образом можно концентрировать многие органические вещества, а также ионы металлов в виде комплексов с органическими лигандами (особенно азот - и серусодержащими). При времени последовательного накопления 60 с и использовании дифференциального импульсного режима регистрации вольтамперограммы удается достичь пределов обнаружения на уровне 10 -10 - 10 -11 моль/л (10 -8 - 10 -9 г/л или 0,01 - 0,001 мкг/дм 3).

Вольтамперометрический комплекс анализа металлов «ИВА - 400МК» (НПКФ »Аквилон», Москва) предназначен для анализа 30 элементов (Cu, Zn, Pb, Cd, As, Co, Ni, Cr, и др. металлы), чувствительность 0,1 - 10 -3 мкг/дм 3 .

Вольтамперометрический анализатор с УФ-облучением проб - ТА-1М (Томск) , который, помимо ионов металлов, позволяет определять целый ряд органических соединений. Для прибора характерны следующие особенности:

· одновременный анализ в трех электрохимических ячейках,

· малая навеска пробы (0,1 - 1,0 г),

· низкая стоимость пробоподготовки и анализа.

В Санкт – Перебурге НФТ «Вольта» выпускает вольтамперометрический комплекс «АВС-1» с вращающимся дисковым стеклоуглеродным электродом, который позволяет проводить анализ токсичных элементов в водах, пищевых продуктах и различных материалах. Предел обнаружения без концентрирования пробы составляет: 0,1 мг/л для Pb, 0,5 мг/л для Cd, 1,0 мкг/л для Cu. Объем пробы - 20 мл, время получения вольтамперной кривой не более 3 мин.

«АЖЭ - 12» (Владикавказ ) предназначен для экспресс-анализа ионного состава сточных и оборотных вод. В анализаторе используется традиционный ртутный электрод. Контролируемые компоненты - Cu, Zn, Pb, Cd, In, Bi, Tl, Sb, As, Co, Ni, Cr, CN - , Cl - , S 2- . Анализатор позволяет проводить измерения без пробоподготовки.

«Экотест-ВА» («Эконикс», Москва ) - портативный вольтамперометрический анализатор. Выполнен на современной микропроцессорной элементной базе и оснащен целым комплексом электродов - графитовым, стеклоуглеродным, микроэлектродами из благородных металлов и ртутным капающим электродом.

Приборы этой серии предназначены для определения металлов Cu, Zn, Pb, Cd, As, Bi, Mn, Co, Ni, Cr, а также ацетальдегида, фурфурола, капролактама и др. веществ в пробах питьевой, природной, сточной воды, почве, а после соответствующей пробоподготовки - в пищевых продуктах и кормах.

Возможности многих аналитических методов анализа вод могут значительно расшириться при применении в процессе пробоподготовки проточно-инжекционных концентрирующих приставок, работающих в автоматическом режиме - например, типа БПИ-М и БПИ-Н.

БПИ-М - предназначен для автоматизированной пробоподготовки, в его состав входят микроколонки с высокоэффективными сорбентами. Производительность блока - 30-60 анализов в день при полной автоматизации процесса. Применение блока позволяет повысить чувствительность в 20 раз за минуту концентрирования. Блок наиболее хорошо работает в сочетании с атомно-абсорбционным детектированием, а также с рентгено-флуоресцентным, атомно-абсорбционным и электрохимическими методами.

БПИ-Н - предназначен для концентрирования ионов металлов на избирательных сорбентах одновременно в четырех микроколонках с ДЭТАТА - сорбентом или на 4 тонкослойных сорбционных ДЭТАТА - фильтрах. Возможно его использование с рентгено-флуоресцентным, атомно-абсорбционным, атомно-эмиссионным, электрохимическим методами.

Анализаторы на основе вольтамперометрии

Приборы на принципе инверсной вольтамперометрии пользуются в последнее время особым спросом. В них селективность и высокая чувствительность сочетаются с простотой анализа.

В отношении определения элементного состава (например, по тяжелым металлам) эти приборы успешно конкурируют с атомно-абсорбционными спектрофотометрами, так как не уступают им по чувствительности, но значительно более компактны и дешевы (примерно в 5 - 10 раз). Они не требуют дополнительных расходных материалов, а также дают возможность одновременного экспрессного определения нескольких элементов.

Полярограф АВС - 1.1 (НТФ «Вольта» Спб).

Пределы обнаружения металлов без концентрирования пробы составляют (мг/л): Cd, Pb, Bi - 0,0001, Hg - 0,00015, Cu - 0,0005, Zn, Ni - 0,01. Стоимость 1700$.

Анализаторы на кондуктометрическом принципе предназначены для количественного определения суммарного содержания солей в воде. «ЭКА-2М» (Санкт-Петербург) измеряет солесодержание в широком интервале значений от 0,05 до 1000 мкСм/см (900$). «АНИОН», «МАРК», КСЛ (от 330 до 900 $), ХПК - анализаторы (750 $).

Газоанализаторы вредных веществ

Автоматический газоанализатор представляет собой прибор, в котором отбор проб воздуха, определение количества контролируемого компонента, выдача и запись результатов анализа проводится автоматически по заданной программе без участия оператора. Для контроля воздушной среды используют газоанализаторы, работа которых основана на различных принципах.

Термокондуктометрические газоанализаторы.

Принцип работы основан на зависимости теплопроводности газовой смеси от ее состава. Чувствительным элементом анализаторов этого типа являются тонкие платиновые нити. В зависимости от состава газа меняется температура чувствительного элемента, возникает ток, сила которого пропорциональна концентрации контролируемого компонента.

Кулонометрические газоанализаторы .

Принцип работы основан на измерении предельного электрического тока, возникающего при электролизе раствора, который содержит определяемое вещество, являющееся электрохимическим деполяризатором. Анализируемая смесь, содержащая, например, диоксид серы, подается в электрохимическую ячейку. Он реагирует с иодом до образования сероводорода, который затем электороокисляется на измерительном электроде. Электрический ток является мерой концентрации определяемого компонента.

ГЛАВА 4. ОБЗОР WEB –САЙТОВ ФИРМ–ПРОДАВЦОВ ХИМИКО – АНАЛИТИЧЕСКОГО ОБОРУДОВАНИЯ

"AGILENT.RU"

Современное тестовое, измерительное и мониторинговое оборудование для разработки, изготовления и внедрения новых электронных приборов и технологий...

http://www.agilent.ru

"АКАДЕМЛАЙН", ЗАО, Москва

Поставляет широкую номенклатуру измерительного химико-аналитического оборудования...

http://www.academline.com/

"АКТАКОМ"

Зарегистрированная торговая марка АКТАКОМ объединяет в себе широкий спектр контрольно-измерительной аппаратуры мирового класса. Все лучшее от зарубежных и отечественных производителей...

http://www.aktakom.ru

"АНАЛИТПРИБОР"

Предлагает газоанализаторы

http://www.analytpribor.ru

"ВАТСОН", АО, Мытищи Московской обл.

Приборы и средства измерений;

http://www.watson.ru/

"ДИПОЛЬ", НПФ, Санкт-Петербург

http://www.dipaul.ru/

"ЕвроЛаб СПб", ООО, Санкт-Петербург

Приборы спектрального анализа, хроматографы.

http://www.eurolab.ru

"IZME.RU"

http://www.izme.ru/

"ИНСОВТ", ЗАО

Разработка и производство газоанализаторов

http://www.insovt.ru

"Институт информационных технологий", Минск, Беларусь

Специализируется на разработке и производстве измерительных приборов для волоконной оптики...

"КИПАРИС", ООО, Санкт-Петербург

http://www.kiparis.spb.ru/

"КОНТИНЕНТ", Гомель

http://www.continent.h1.ru

"Контрольно-измерительные приборы и оборудование", Волгоград

http://www.oscilloscop.ru

"Контур", ИТЦ, ООО, Новосибирск

http://www.kip.ru/

"КрайСибСтрой", ООО, Красноярск

http://www.kipkr.ru/

"Крисмас+", ЗАО, Санкт-Петербург

http://www.christmas-plus.ru

"КУРС", ООО, Санкт-Петербург

http://www.kypc.spb.ru

"ЛЮМЭКС", Санкт-Петербург

http://www.lumex.ru/

"МЕТТЕК"

http://www.mettek.ru

"МЕТТЛЕР ТОЛЕДО"

http://www.mt.com

"МОНИТОРИНГ", НТЦ, Санкт-Петербург

http://www.monitoring.vniim.ru

"Научные приборы", ОАО, Санкт-Петербург

http://www.sinstr.ru

"НеваЛаб", ЗАО, Санкт-Петербург

http://www.nevalab.ru

"ОВЕН", ПО, Москва

http://www.owen.ru/

"ОКТАВА+", Москва

http://www.octava.ru/

"ОПТЭК", ЗАО, Санкт-Петербург

Разрабатывает и производит газоанализаторы и аналитические системы различного назначения для использования в экологии, промышленности и научных исследованиях...

http://www.optec.ru

"ПОЛИТЕХФОРМ", Москва

http://www.ptfm.ru

"Практик-НЦ", ОАО, Москва, Зеленоград

http://www.pnc.ru/

"ПРИБОРЫ И АНАЛИТИЧЕСКАЯ ТЕХНИКА"

Приборы для химического анализа.

http://www.zhdanov.ru/

"Сартогосм", ЗАО, Санкт-Петербург

http://www.sartogosm.ru

"Специал", ЗАО, Москва

http://www.special.ru

"ТКА"

http://www.tka.spb.ru/

"ТСТ", ЗАО, Санкт-Петербург

http://www.tst-spb.ru

"ЭКОПРИБОР", НПО, Москва

Предлагает газоанализаторы и газоаналитические системы...

http://ecopribor.ru

"ЭКОТЕХ", МСП, Украина

http://ecotech.dn.ua

"ЭКОТЕХИНВЕСТ", НПФ, Москва

http://ecotechinvest.webzone.ru

"Эксис", ЗАО, Москва, Зеленоград

http://www.eksis.ru/

"ЭЛИКС"

http://www.eliks.ru/

"ЭМИ", ООО, Санкт-Петербург

Производство оптических газоанализаторов, анализаторов нефтепродуктов.

http://www.igm.spb.ru

"ЭНЕРГОТЕСТ", ЗАО, Москва

http://www.energotest.ru, http://www.eneffect.ru

ХИММЕД

Аналитические приборы и хроматография

е -mail: [email protected]

ЛИТЕРАТУРА

1. Гейровский Я., Кута Я., Основы полярографии, пер. с чеш., М., 1965;

2. Га л юс 3., Теоретические основы электрохимического анализа, пер. с польск., М., 1974;

3. Каплан Б. Я., Импульсная полярография, М., 1978;

4. Брайнина X. 3., Нейман Е. Я., Твердофазные реакции в электроаналитической химии, М., 1982;

5. Каплан Б. Я., Пац Р. Г., Салихджанова Р. М.-Ф., Вольтамперометрия переменного тока, М., 1985.

6. Плэмбек Дж. Электрохимические методы анализа. / Пер. с англ. М.: Мир, 1985. 496 с.

7. Краткая химическая энциклопедия. М.: Советская энциклопедия, 1964. Том 1. А–Е. 758 c.

8. Классификация и номенклатура электрохимических методов // Журн. аналит. химии. 1978. Т. 33, вып. 8. С. 1647–1665.

9. Recommended Terms, Symbols and Definitions for Electroanalytical Chemistry // Pure & Appl. Chem. 1979. Vol. 51. P. 1159–1174.

10. Об использовании понятия «химический эквивалент» и связанных с ним величин: Журн. аналит. химии. 1989. Т. 44, вып. 4. С. 762–764; Журн. аналит. химии. 1982. Т. 37, вып. 5. С. 946; Журн. аналит. химии. 1982. Т. 37, вып. 5. С. 947.

11. Нейман Е.Я. Терминология современной аналитической химии и ее формирование // Журн. аналит. химии. 1991. Т. 46, вып. 2. С. 393–405.

12. Представление результатов химического анализа (Рекомендации IUPAC 1994 г.) // Журн. аналит. химии. 1998. Т. 53. № 9. С. 999–1008.

13. Compendium of Analytical Nomenclature (Definitive Rules 1997). 3rd ed., IUPAC, Blackwell Science, 1998. 8.1–8.51 (Electrochemical Analysis).


Рязанский государственный технологический колледж

Курсовая работа
по дисциплине
«Технические измерения и их метрологическое обеспечение »
Тема курсовой работы: «Электрохимические методы исследования состава вещества»

выполнила:
студентка группы №158
Харламова Анастасия Игоревна

проверил:
руководитель курсовой работы
Чекурова Наталья Владимировна

Рязань 2011год
СОДЕРЖАНИЕ

ВВЕДЕНИЕ 2

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 3
    1.1 Общая характеристика физико-химических методов анализа 3
1.2 Характеристика электрохимических методов 4
    1.3 Классификация электрохимических методов анализа 5
2 ЭКСПЕРЕМЕНТАЛЬНО-ПРАКТИЧЕСКАЯ ЧАСТЬ 15
    ЗАКЛЮЧЕНИЕ 21
    СПИСОК ЛИТЕРАТУРЫ 22

ВВЕДЕНИЕ
Современные отрасли производства и социальной жизни людей ставят свои специфические задачи перед физико-химическими методами анализа по контролю качества продукции. Одними из основных физико-химических методов анализа являются электрохимические методы анализа.
Этими методами можно быстро и достаточно точно определить многие показатели качества продукции.
Электрохимические методы анализа состава вещества широко используются в различных отраслях промышленности. Они позволяют автоматизировать получение результатов о качестве продукции и исправлять нарушения, не останавливая производство. В пищевой промышленности этими методами определяют кислотно-щелочной баланс продукта, наличие вредных и токсичных веществ и другие показатели, влияющие не только на качество, но и на безопасность пищи.
Оборудование, предназначенное для проведения электрохимических анализов, отличается относительной дешевизной, доступностью и простотой в использовании. Поэтому эти методы имеют широкое применение не только в специализированных лабораториях, но и на многих производствах.
В связи с этим целью данной курсовой работы является изучение электрохимических методов исследования состава вещества.
Для достижения поставленной цели были сформулированы следующие задачи:
- рассмотреть электрохимические методы анализа их классификацию и значение в системе контроля качества продукции;
-Изучить метод потенциометрического титрования;
- Определить кислотность варенья.

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
    1.1 Общая характеристика физико-химических методов анализа
Свойства веществ и материалов, производимой и реализуемой продукции, изучаются с использованием методов современной аналитической химии, которые направлены на решение задач управления качеством продукции.
Основными рабочими средствами аналитической химии являются физико-химические методы анализа. Они основываются на регистрации аналитических сигналов, появление которых зависит от физико-химических свойств вещества, его природы и содержания в анализируемом продукте.
Современные отрасли производства и социальной жизни людей ставят свои специфические задачи перед физико-химическими методами анализа по контролю качества продукции.
В физико-химических методах количественного анализа выделяют 3 группы:
Рисунок 1 - Классификация физико- химических методов количественного анализа
1) Оптические методы основаны на взаимодействии электромагнитного излучения с веществом. К ним относятся: поляриметрия, спектрометрия, рефрактометрия, фотоколометрия и т.д.
2) Электрохимические методы основаны на исследовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. В данную группу методов входят: кондуктометрия, вольтамперметрия, потенциометрия и другие.
3) Хроматографические методы основаны на распределении одного из нескольких веществ между двумя, как говорят, фазами (например, между твердым телом и газом, между двумя жидкостями и др.), причем одна из фаз постоянно перемещается, т. е. является подвижной. Выделяют газожидкостный, жидкостный и ионный методы оценки качества продуктов питания.
Широкое применение в контроле качества продукции получили хроматографические и электрохимические методы анализа.

1.2 Характеристика электрохимических методов
Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. В общем случае различают две группы электрохимических методов (Рисунок 2):

Рисунок 2 – классификация электрохимических методов анализа, в зависимости от типа явлений, замеряемых в процессе анализа
Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.
Методы с наложением постороннего потенциала, основанные на измерении:
а) электрической проводимости растворов - кондуктометрия;
б) количества электричества, прошедшего через раствор - кулонометрия;
в) зависимости величины тока от приложенного потенциала - вольт-амперометрия;
г) времени, необходимого для прохождения электрохимической реакции - хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия). В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.
Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент, в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода - индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом - электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами - потенциометрами..

    1.3 Классификация электрохимических методов анализа
Для качественного и количественного анализа химических веществ разработаны различные электрохимические методы. В зависимости от процессов, лежащих в основе анализа, используемых приборов и измеряемых величин. Выделяют 5 основных видов электрохимического анализа они представлены на рисунке 3.

Рисунок 3-основные электрохимические методы анализа
Некоторые электрохимические методы подразделяются на два вида анализа: прямой и косвенный (Рисунок 4)

Рисунок 4- виды электрохимического анализа

    Кондуктометрический метод.
Кондуктометрический метод – метод, основанный на измерении электропроводности анализируемого раствора
В кондуктометрическом методе выделяют два вида анализа прямой - кондуктометрию и косвенный - кондуктометрическое титрование(рисунок 4)

Рисунок 5 – Методы кондуктометрического анализа.

Кондуктометрия основана на измерении электрической проводимости раствора. Анализ проводят с помощью кондуктометров - приборов, измеряющих сопротивление растворов. По величине сопротивления R определяют обратную ему по величине электрическую проводимость растворов L.
Прямая кондуктометрия используется для определения концентрации раствора по калибровочному графику. Для составления калибровочного графика замеряют электропроводимость серии растворов с известной концентрацией и строят калибровочный график зависимости электропроводимости от концентрации. Затем измеряют электропроводимость анализируемого раствора и по графику определяют его концентрацию.
Чаще применяют кондуктометрическое титрование. При этом в ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют соответствующим титрантом. Титрант добавляют равными порциями. После добавления каждой порции титранта замеряют электропроводимость раствора и строят график зависимости между электропроводимостью и объемом титранта. При добавлении титранта происходит изменение электропроводимости раствора, т.е. наступает перегиб кривой титрования. От подвижности ионов зависит электропроводимость раствора: чем выше подвижность ионов, тем больше электропроводимость раствора.
Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, в отсутствии химических индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы веществ (до моль/дм). Кондуктометрическим титрованием анализируют смеси веществ, т.к. различия в подвижности различных ионов существенны и их можно дифференцированно оттитровывать в присутствии друг друга.

      Потенциометрический метод анализа
    Потенциометрический метод - это метод качественного и количественного анализа, основанный на измерении потенциалов, возникающих между испытуемым раствором и погруженным в него электродом.
Прямым анализом здесь является потенциометрия, а косвенным - потенциометрическое титрование.(рисунок 5)
Рисунок 6 – Методы потенциометрического титрования

Потенциометрия основана на измерении разности электрических потенциалов, возникающих между разнородными электродами, опущенными в раствор с определяемым веществом. Электрический потенциал возникает на электродах при прохождении на них окислительно- восстановительной (электрохимической) реакции. Окислительно-восстановительные реакции протекают между окислителем и восстановителем с образованием окислительно-восстановительных пар, потенциал Е которых определяется по уравнению Нернста концентрациями компонентов пар.
Потенциометрические измерения проводят, опуская в раствор два электрода - индикаторный, реагирующий на концентрацию определяемых ионов, и электрод сравнения, относительно которого измеряется потенциал индикаторного. Применяют несколько видов индикаторных электродов и электродов сравнения.
Электроды первого рода обратимы относительно ионов металла, из которого состоит электрод. При опускании такого электрода в раствор, содержащий катионы металла, образуется электродная пара.
Электроды второго рода чувствительны к анионам и представляют собой металл, покрытый слоем нерастворимой его соли с анионом, к которому чувствителен электрод. При контакте такого электрода с раствором, содержащим указанный анион возникает потенциал Е, величина которого зависит от произведения растворимости соли и концентрации аниона в растворе.
Электродами второго рода являются хлорсеребряный и каломельный. Насыщенные хлорсеребряный и каломельный электроды поддерживают постоянный потенциал и применяют в качестве электродов сравнения, по отношению к которым измеряется потенциал индикаторного электрода.
Инертные электроды - пластина или проволока, изготовленная из трудноокисляемых металлов - платины, золота, палладия. Применяются они для измерения Е в растворах, содержащих окислительно-восстановительную пару.
Мембранные электроды различного типа имеют мембрану, на которой возникает мембранный потенциал Е. Величина Е зависит от разности концентраций одного и того же иона по разным сторонам мембраны. Простейшим и наиболее употребляемым мембранным электродом является стеклянный электрод.
Применяемые в потенциометрии электроды имеют большое внутреннее сопротивление (500-1000 МОм), поэтому существующие типы потенциометров представляют собой сложные электронные высокоомные вольтметры. Для измерения ЭДС электродной системы в потенциометрах применяют компенсационную схему, позволяющую уменьшить ток в цепи ячейки.
Наиболее часто потенциометры применяют для прямых измерений рН, показатели концентраций других ионов pNa, pK, pNH, pCl и мВ. Измерения проводят, используя соответствующие ион-селективные электроды.
Для измерения рН, характеризующего концентрацию ионов водорода в растворах, питьевой воде, пищевой продукции и сырье, объектах окружающей среды и производственных системах непрерывного контроля технологических процессов, в том числе в агрессивных средах применяют специальные приборы,которые называются рН-метры (рисунок 6). Они представляют собой стеклянный электрод и электрод сравнения - хлорсеребряный. Перед проведением анализов необходимо проверить калибровку рН-метров по стандартным буферным растворам, фиксаналы которых прикладываются к прибору.

Рисунок 7- рН-метр
Действие pH-метра основано на измерении величины ЭДС электродной системы, показатели которой пропорциональны активности ионов водорода в растворе - pH (его водородному показателю). Для контроля и настройки режимов pH-метра используется пульт, соединённый с блоком электронного преобразования. рН-метры помимо прямых определений рН, pNa, pK, pNH, pCl и других позволяют проводить потенциометрическое титрование определяемого иона
Погрешности измерения рН-метров:
1) погрешности измерения ЭДС, температуры.
2)погрешность градуировки, в которую входит погрешность БР вместе с погрешностью прибора;
3) случайная составляющая погрешности измерений.

Помимо инструментальной погрешности существует погрешность методики измерений.
Две главные настройки выполняются при калибровке - устанавливается усиление и смещения инвертирующего усилителя.
и т.д.................

Введение

Глава 1. Общие понятия. Классификация электрохимических методов анализа

Глава 2. Потенциометрические методы анализа (потенциометрия)

1 Принцип метода

3 Потенциометрическое титрование

Глава 3. Кондуктометрический метод анализа

1 Принцип метода. Основные понятия

2 Принцип кондуктометрии

3 Кондуктометрическое титрование

Глава 4. Кондуктометрический анализ (кондуктометрия)

1 Сущность метода

2 Количественный полярографический анализ

3 Применение полярографии

Глава 5. Амперометрическое титрование

Глава 6. Кулонометрический анализ (кулонометрия)

1 Принцип метода

3 Кулонометрическое титрование

Заключение

Список литературы

ВВЕДЕНИЕ

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Электрохимические методы анализа делятся на пять основных групп: потенциометрию, вольтамперометрию, кулонометрию, кондуктрометрию и амперометрию.

Применение данных методов в количественном анализе основано на зависимости величин измеряемых параметров при протекании электрохимического процесса от отделяемого вещества в анализируемом растворе, участвующем в данном электрохимическом процессе. К таким параметрам можно отнести разность электрических потенциалов, количество электричества. Электрохимические процессы - это процессы, которые одновременно сопровождаются протеканием химической реакции и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике, электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором, в который погружены электроды.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и тому подобное) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и тому подобное) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, то есть используют зависимость измеряемого параметра от объема титранта.

ГЛАВА 1. ОБЩИЕ ПОНЯТИЯ. КЛАССИФИКАЦИЯ ЭЛЕКТРОХИМИЧЕСКИХ МЕТОДОВ АНАЛИЗА

Электроаналитическая химия включает электрохимические методы анализа, основанные на электродных реакциях и на переносе электричества через растворы.

Применение электрохимических методов в количественном анализе базируется на использовании зависимостей величин измеряемых параметров электрохимических процессов (разность электрических потенциалов, ток, количество электричества) от содержания определяемого вещества в анализируемом растворе, участвующего в данном электрохимическом процессе. Электрохимические процессы - такие процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором,в который погружены электроды.

Классификация электрохимических методов анализа. Электрохимические методы анализа классифицируют по-разному.Классификация, основанная на учете природы источника электрической энергии в системе. Различают две группы методов:

а) Методы без наложения внешнего (постороннего) потенциала.

Источником электрической энергии служит сама электрохимическая система, представляющая собой гальванический элемент (гальваническую цепь). К таким методам относятся потенциометрические методы. Электродвижущая сила - ЭДС - и электродные потенциалы в такой системе зависят от содержания определяемого вещества в растворе.

б) Методы с наложением внешнего (постороннего) потенциала. К таким методам относятся:

кондуктометрический анализ - основан на измерении электрической проводимости растворов как* функции их концентрации;

вольтамперометрический анализ - основан на измерении тока как функции приложенной известной разности потенциалов и концентрации раствора;

кулонометрический анализ - основан на измерении количества электричества, прошедшего через раствор, как функции его концентрации;

электрогравиметрический анализ - основан на измерении массы продукта электрохимической реакции.

Классификация по способу применения электрохимических методов. Различают прямые и косвенные методы.

а)Прямые методы. Измеряют электрохимический параметр как известную функцию концентрации раствора и по показанию соответствующего измерительного прибора находят содержание определяемого вещества в растворе.

б)Косвенные методы - это методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы.

В соответствии с данной классификацией различают, например, прямую кондуктометрию и кондуктометрическое титрование.

ГЛАВА 2. ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА (ПОТЕНЦИОМЕТРИЯ)

1 Принцип метода

Потенциометрический анализ (потенциометрия) основан на измерении ЭДС и электродных потенциалов как функции концентрации анализируемого раствора.

Если в электрохимической системе - в гальваническом элементе -на электродах протекает реакция:

аА+bВ↔dD + еЕ

с переносом п электронов, то уравнение Нернста для ЭДС Е этой реакции имеет вид:

E꞊E˚- RTnFlnaDda Eea(A)a aBb

где, как обычно, Е° - стандартная ЭДС реакции (разность стандартных электродных потенциалов), R - газовая постоянная, Т - абсолютная температура, при которой протекает реакция, F - число Фарадея; а(А), a(В), a(D) и я(Е) - активности реагентов - участников реакции. Уравнение (10.1) справедливо для ЭДС обратимо работающего гальванического элемента.

Для комнатной температуры уравнение (10.1) можно представить в форме:

E꞊E˚- 0,059nlnaDda Eea(A)a aBb

В условиях, когда активности реагентов приблизительно равны их концентрации, уравнение (1) переходит в уравнение (3):

꞊E˚- RTnFlncDdc EecAa aBb

где с(А), с(В), с(Е), c(D) - концентрации реагентов. Для комнатной температуры это уравнение можно представить в виде (4):

꞊E˚- 0,059nlncDdc EecAa aBb

При потенциометрических измерениях в электрохимической ячейке используют два электрода: индикаторный электрод, потенциал которого зависит от концентрации определяемого (потенциалопределяющего) вещества в анализируемом растворе, и электрод сравнения, потенциал которого в условиях проведения анализа остается постоянным. Поэтому величину ЭДС, определяемую уравнениями (1)-(4), можно рассчитать как разность реальных потенциалов этих двух электродов.

В потенциометрии используют электроды следующих типов: электроды первого, второго рода, окислительно-восстановительные, мембранные электроды.

Электроды первого рода - это электроды, обратимые по катиону, общему с материлом электрода. Различают три разновидности электродов первого рода.

а) Металл М, погруженный в раствор соли того же металла. На поверхности таких электродов протекает обратимая реакция:

Мn+ + пе = М

Реальный потенциал такого электрода первого рода зависит от активности a(Mn+) катионов металла и описывается уравнениями (5)-(8).

В общем случае для любой температуры:

꞊E˚+ RTnFln a(Mn+)

Для комнатной температуры:

꞊E˚+ 0,059nln a(Mn+)

При малых концентрациях c(Mn+), когда активность a(Mn+)катионов металла приблизительно равна их концентрации:

꞊E˚+ RTnFln c(Mn+)

Для комнатной температуры:

б)Газовые электроды, например, водородный электрод, в том числе и стандартный водородный электрод. Потенциал обратимо работающего газового водородного электрода определяется активностью ионов водорода, т.е. величиной рН раствора, и при комнатной температуре равен:

꞊E˚+ 0,059 lg а(Н30+) = 0,059 lg а(Н3О+) = -0,059рН

поскольку для водородного электрода стандартный потенциал принимается равным нулю (£° =0), а в соответствии с электродной реакцией:

Н++е = Н

число электронов, участвующих в этой реакции, равно единице: п = 1.

в)Амальгамные электроды, представляющие собой амальгаму металла, погруженную в раствор, содержащий катионы того же металла. Потенциал таких электродов первого рода зависит от активности a(Mn+)катионов металла в растворе и активности я(М) металла в амальгаме:

꞊E˚+ RTnFlna(Mn+)a(M)

Амальгамные электроды обладают высокой обратимостью.

Электроды второго рода обратимы по аниону. Различают следующие виды электродов второго рода.

а) Металл, поверхность которого покрыта малорастворимой солью этого же металла, погруженный в раствор, содержащий анионы, входящие в состав этой малорастворимой соли. Примером могут служить хлорсеребряный электрод Ag|AgCl, КС1 или каломельный электрод Hg|Hg2Cl2, КС1.

Хлорсеребряный электрод состоит из серебряной проволоки, покрытой малорастворимой в воде солью AgCI, погруженной в водный раствор хлорида калия. На хлорсеребряном электроде протекает обратимая реакция

Каломельный электрод состоит из металлической ртути, покрытой пастой малорастворимого хлорида ртути(1) Hg2Cl2 - каломели, контактирующей с водным раствором хлорида калия. На каломельном электроде протекает обратимая реакция:

Cl2 + 2е = 2Hg + 2СГ.

Реальный потенциал электродов второго рода зависит от активности анионов и для обратимо работающего электрода, на котором протекает реакция:

Ne = М + Аn-

описывается уравнениями Нернста (9)-(12).

В общем случае при любой приемлемой температуре Т:

꞊E˚- RTnFln a(An-)

Для комнатной температуры:

꞊E˚- 0,059nln a(An-)

Для условий, в которых активность анионов приблизительно равна их концентрации с(А"~):

E꞊E˚- RTnFln c(An-)

Для комнатной температуры:

꞊E˚- 0,059nln c(An-)

Так, например, реальные потенциалы Е1 и E2 соответственно хлор-серебряного и каломельного электродов при комнатной температуре можно представить в виде:

꞊E1˚- 0,0591g a(Cl-),꞊E2˚- 0,0591g a(Cl-).

Электроды второго рода обладают высокой обратимостью и стабильны в работе, поэтому их часто используют в качестве электродов сравнения, способных устойчиво поддерживать постоянное значение потенциала.

б) Газовые электроды второго рода, например, хлорный электрод Pt, Cl2 КС1. Газовые электроды второго рода в количественном потенциометрическом анализе применяются редко.

Окислительно-восстановительные электроды состоят из инертного материала (платина, золото, вольфрам, титан, графит и др.), погруженного в раствор, содержащий окисленную Ох и восстановленную Red формы данного вещества. Существуют две разновидности окислительно-восстановительных электродов:

а)электроды, потенциал которых не зависит от активности ионов водорода, например, Pt | FeCl3, FeCI2, Pt | K3, K4 и т.д.;

б)электроды, потенциал которых зависит от активности ионов водорода, например, хингидронный электрод.

На окислительно-восстановительном электроде, потенциал которого не зависит от активности ионов водорода, протекает обратимая реакция:

Ох + пе = Red

Реальный потенциал такого окислительно-восстановительного электрода зависит от активности окисленной и восстановленной форм данного вещества и для обратимо работающего электрода описывается, в зависимости от условий (по аналогии с вышерассмотренными потенциалами), уравнениями Нернста (13)-(16):

꞊E˚+ RTnFln a (Ox)a (Red)꞊E˚+ 0,059nlg a (Ox)a (Red)꞊E˚+ RTnFln c(Ox)c (Red)꞊E˚+ 0,059nlg c (Ox)c(Red)

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Мембранные, или ион-селективные, электроды - электроды, обратимые по тем или иным ионам (катионам или анионам), сорбируемым твердой или жидкой мембраной. Реальный потенциал таких электродов зависит от активности тех ионов в растворе, которые сорбируются мембраной. Мембранные электроды с твердой мембраной содержат очень тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией: раствор (стандартный) с точно известной концентрацией определяемых ионов и анализируемый раствор с неизвестной концентрацией определяемых ионов. Вследствие различной концентрации ионов в обоих растворах ионы на разных сторонах мембраны сорбируются в неодинаковых количествах, неодинаков и возникающий при сорбции ионов электрический заряд на разных сторонах мембраны. Как результат возникает мембранная разность потенциалов.

Определение ионов с применением мембранных ион-селективных электродов называют ионометрией.

Как уже говорилось выше, при потенциометрических измерениях электрохимическая ячейка включает два электрода - индикаторный электрод и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих двух электродов. Поскольку потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, то ЭДС зависит только от потенциала индикаторного электрода, т.е. от активностей (концентраций) тех или иных ионов в растворе. На этом и основано потенциометрическое определение концентрации данного вещества в анализируемом растворе.

Для потенциометрического определения концентрации вещества в растворе применяют как прямую потенциометрию, так и потенциометрическое титрование, хотя второй способ используется намного чаще первого.

Определение концентрации вещества в прямой потенциометрии проводят обычно методом градуировочного графика или методом добавок стандарта.

а) Метод градуировочного графика. Готовят серию из 5-7 эталонных растворов с известным содержанием определяемого вещества. Концентрация определяемого вещества и ионная сила в эталонных растворах не должны сильно отличаться от концентрации и ионной силы анализируемого раствора: в этих условиях уменьшаются ошибки определения.

Ионную силу всех растворов поддерживают постоянной.введением индифферентного электролита. Эталонные растворы последовательно вносят в электрохимическую (потенциометрическую) ячейку. Обычно эта ячейка представляет собой стеклянный химический стакан, в который помещают индикаторный электрод и электрод сравнения.

Измеряют ЭДС эталонных растворов, тщательно промывая дистиллированной водой электроды и стакан перед заполнением ячейки каждым эталонным раствором. По полученным данным строят градуировочный график в координатах ЭДС-lg с, где с - концентрация определяемого вещества в эталонном растворе. Обычно такой график представляет собой прямую линию. Затем в электрохимическую ячейку вносят (после промывания ячейки дистиллированной водой) анализируемый раствор и измеряют ЭДС ячейки. По градуировочному графику находят lg с(Х), где с(Х) - концентрация определяемого вещества в анализируемом растворе.

б) Метод добавок стандарта. В электрохимическую ячейку вносят известный объем V(X) анализируемого раствора с концентрацией с(Х) и измеряют ЭДС ячейки. Затем в тот же раствор прибавляют точно измеренный небольшой объем стандартного раствора V(ст) с известной, достаточно большой, концентрацией с(ст) определяемого вещества и снова определяют ЭДС ячейки.

Рассчитывают концентрацию с(Х) определяемого вещества в анализируемом растворе по формуле (10.17):

с(Х)= с(ст) V (ст)V X+ V (ст)

где E - разность двух измеренных значений ЭДС, п - число электронов, участвующих в электродной реакции.

Применение прямой потенциометрии. Метод применяется для определения концентрации ионов водорода (рН растворов), анионов, ионов металлов (ионометрия).

Большую роль при использовании прямой потенциометрии играют выбор подходящего индикаторного электрода и точное измерение равновесного потенциала.

При определении рН растворов в качестве индикаторных используют электроды, потенциал которых зависит от концентрации ионов водорода: стеклянный, водородный, хингидронный и некоторые другие. Чаще применяют мембранный стеклянный электрод, обратимый по ионам водорода. Потенциал такого стеклянного электрода определяется концентрацией ионов водорода, поэтому ЭДС цепи, включающей стеклянный электрод в качестве индикаторного, описывается при комнатной температуре уравнением:

K + 0,059рН,

где постоянная К зависит от материала мембраны, природы электрода сравнения. Стеклянный электрод позволяет определять рН в интервале рН = 0-10 (чаще - в диапазоне рН = 2-10) и обладает высокой обратимостью и стабильностью в работе.

Хингидронный электрод, часто применявшийся ранее, - это окислительно-восстановительный электрод, потенциал которого зависит от концентрации ионов водорода. Он представляет собой платиновую проволоку, погруженную в раствор кислоты (обычно НС1), насыщенный хингидроном - эквимолекулярным соединением хинона с гидрохиноном состава С6Н402 С6Н4(ОН)2 (темно-зеленый порошок, малорастворимый в воде). Схематическое обозначение хингидронного электрода: Pt | хингидрон, НС1.

На хингидронном электроде протекает окислительно-восстановительная реакция:

С6Н402 + 2Н+ + 2е = С6Н4(ОН)2

Потенциал хингидронного электрода при комнатной температуре описывается формулой

E°-0,059рН.

Хингидронный электрод позволяет измерять рН растворов в интервале рН = 0-8,5. При рН < 0 хингидрон гидролитически расщепляется: при рН > 8,5 гидрохинон, являющийся слабой кислотой, вступает в реакцию нейтрализации, Хингидронный электрод нельзя применять в присутствии сильных окислителей и восстановителей.

Мембранные ион-селективные электроды используют, как уже отмечалось выше, в ионометрии в качестве индикаторных для определения различных катионов (Li+, Na+, К+ Mg2t, Са2+, Cd2+, Fe2+, Ni2+ и др.) ианионов (F-, Сl-, Вг-,I-, S2- и др.).

К достоинствам прямой потенциометрии относятся простота и быстрота проведения измерений, для измерений требуются небольшие объемы растворов.

3Потенциометрическое титрование

Потенциометрическое титрование - способ определения объема титранта, затраченного на титрование определяемого вещества в анализируемом растворе, путем измерения ЭДС (в процессе титрования) с помощью гальванической цепи, составленной из индикаторного электрода

и электрода сравнения. При потенциометрическом титровании анализируемый раствор, находящийся в электрохимической ячейке, титруют

подходящим титрантом, фиксируя конец титрования по резкому изменению ЭДС измеряемой цепи - потенциала индикаторного электрода, который зависит от концентрации соответствующих ионов и резко изменяется в точке эквивалентности.

Измеряют изменение потенциала индикаторного электрода в процессе титрования в зависимости от объема прибавленного титранта. По полученным данным строят кривую потенциометрического титрования и по этой кривой определяют объем израсходованного титранта в ТЭ.

При потенциометрическом титровании не требуется использование индикаторов, изменяющих окраску вблизи ТЭ. Применение потенциометрического титрования. Метод универсальный, его можно применять для индикации конца титрования во всех типах титрования: кислотно-основном, окислительно-восстановительном, комплексиметрическом, осадительном, при титровании в неводных сре-дах. В качестве индикаторных используют стеклянный, ртутный, ионселективные, платиновый, серебряный электроды, а в качестве электродов сравнения - каломельный, хлорсеребряный, стеклянный.

Метод обладает высокой точностью, большой чувствительностью: позволяет проводить титрование в мутных, окрашенных, неводных средах, раздельно определять компоненты смеси в одном анализируемом растворе, например, раздельно определять хлорид- и иодид-ионы при аргентометрическом титровании.

Методами потенциометрического титрования анализируют многие лекарственные вещества, например, аскорбиновую кислоту, сульфамидные препараты, барбитураты, алкалоиды и др.

Основателем кондуктометрического анализа считается немецкий физик и физико-химик Ф.В.Г. Кольрауш (1840-1910), который впервые в 1885 г. предложил уравнение, устанавливающее связь между электропроводностью растворов сильных электролитов и их концентрацией. В

середине 40-х гг. XX в. был разработан метод высокочастотного кондуктометрического титрования. С начала 60-х гг. XX в. стали использовать кондуктометрические детекторы в жидкостной хроматографии.

1 Принцип метода. Основные понятия

Кондуктометрический анализ (кондуктометрия) основан на использовании зависимости между электропроводностью (электрической проводимостью) растворов электролитов и их концентрацией.

Об электропроводности растворов электролитов - проводников второго рода - судят на основании измерения их электрического сопротивления в электрохимической ячейке, которая представляет собой стеклянный сосуд (стакан) с двумя впаянными в него электродами, между которыми и находится испытуемый раствор электролита. Через ячейку пропускают переменный электрический ток. Электроды чаще всего изготовляют из металлической платины, которую для увеличения поверхности электродов покрывают слоем губчатой платины путем электрохимического осаждения из растворов платиновых соединений (электроды из платинированной платины).

Во избежание осложнений,связанных с процессами электролиза и поляризации, кондуктометрические измерения проводят в переменном электрическом поле. Электрическое сопротивление R слоя раствора электролита между электродами, как и электрическое сопротивление проводников первого рода, прямо пропорционально длине (толщине) l этого слоя и обратно пропорционально площади S поверхности электродов:

R= ρ lS lkS

где коэффициент пропорциональности р называют удельным электрическим сопротивлением, а обратную величину к = 1/р - удельной электропроводностью (удельной электрической проводимостью). Так как электрическое сопротивление R измеряют в омах, а толщину l слоя раствора электролита - в см, площадь S поверхности электродов - в см2, то удельную электропроводность к измеряют в единицах Ом-1 см-1, или, поскольку Ом-1 - это сименс (См), то - в единицах См см-1.

По физическому смыслу удельная электропроводность - это электрическая проводимость слоя электролита, находящегося между сторонами куба с длиной сторон 1 см, численно равная току, проходящему через слой раствора электролита с площадью поперечного сечения 1 см2 при градиенте приложенного электрического потенциала 1 В/см.

Удельная электропроводность зависит от природы электролита и растворителя, от концентрации раствора, от температуры.

С увеличением концентрации раствора электролита его удельная электропроводность вначале возрастает, затем проходит через максимум, после чего уменьшается. Такой характер изменения удельной электропроводности обусловлен следующими причинами. Вначале с увеличением концентрации электролита возрастает число ионов - токпереносящих частиц - как для сильных, так и для слабых электролитов. Поэтому электропроводность раствора (проходящий через него электрический ток) повышается. Затем по мере роста концентрации раствора увеличиваются его вязкость (понижающая скорости движения ионов) и электростатические взаимодействия между ионами, что препятствует возрастанию электрического тока и при достаточно больших концентрациях способствует его уменьшению.

В растворах слабых электролитов с ростом концентрации понижается степень диссоциации молекул электролита, что приводит к уменьшению числа ионов - токпроводящих частиц - и к понижению удельной электропроводности. В растворах сильных электролитов при высоких концентрациях возможно образование ионных ассоциатов (ионных двойников, тройников и т.п.), что также благоприятствует падению электропроводности.

Удельная электропроводность растворов электролитов увеличивается с ростом температуры вследствие понижения вязкости растворов, что приводит к повышению скорости движения ионов, а для слабых электролитов - также и к увеличению степени их ионизации (диссоциации на ионы). Поэтому количественные кондуктометрические измерения необходимо проводить при постоянной температуре, термостатируя кондуктометрическую ячейку.

Кроме удельной электропроводности в кондуктометрии используют эквивалентную электропроводность X и молярную электропроводность р. По физическому смыслу эквивалентная электропроводность X - это электрическая проводимость слоя раствора электролита толщиной 1 см, находящегося между одинаковыми электродами с такой площадью, чтобы объем раствора электролита, заключенного между ними, содержал 1 г-экв растворенного вещества. При этом за молярную массу эквивалента принимается молярная масса одинаковых частиц с единичным зарядовым числом («зарядом»), например,

Н+, Br - , 12Са2+, 13Fe3+ и т.д.

Эквивалентная электропроводность увеличивается с уменьшением концентрации раствора электролита. Максимальное значение эквивалентной электропроводности достигается при бесконечном разбавлении раствора. Эквивалентная электропроводность, как и удельная, возрастает с повышением температуры. Эквивалентная электропроводность X связана с удельной электропроводностью к соотношением (20):

λ= 1000 kc

В прямой кондуктометрии концентрацию вещества в анализируемом растворе определяют по результатам измерений удельной электропроводности этого раствора. При обработке данных измерений используют два метода: расчетный метод и метод градуировочного графика.

Расчетный метод. В соответствии с уравнением (10.20) молярная концентрация эквивалента с электролита в растворе может быть рассчитана, если известны удельная электропроводность к и эквивалентная электропроводность

: c = 1000 kλ

Удельную электропроводность определяют экспериментально на основании измерения электрического сопротивления термостатированной кондуктометрической ячейки.

Эквивалентная электропроводность раствора λ равна сумме подвижностей катиона λ+ и аниона Х λ -:

λ = λ + + λ-

Если подвижности катиона и аниона известны, то концентрацию можно рассчитать по формуле (24):

c = 1000 kλ + + λ-

Так поступают при определении методом прямой кондуктометрии концентрации малорастворимого электролита в его насыщенном растворе (сульфаты кальция, бария; галогениды серебра и др.). Метод градуировочного графика. Готовят серию эталонных растворов, каждый из которых содержит точно известную концентрацию определяемого вещества, измеряют их удельную электропроводность при постоянной температуре в термостатируемой кондуктометрической ячейке. По полученным данным строят градуировочный график, откладывая по оси абсцисс концентрацию эталонных растворов, а по оси ординат - значения удельной электропроводности. В соответствии с уравнением (24) построенный график в относительно небольшом диапазоне изменения концентраций обычно представляет собой прямую линию.

В широком интервале изменения концентраций, когда подвижности катиона и аниона, входящие в уравнение (24), могут заметно изменяться, наблюдаются отклонения от линейной зависимости.

Затем строго в тех же условиях измеряют удельную электропроводность к(Х) определяемого электролита в анализируемом растворе с неизвестной концентрацией с(Х) и по графику находят искомую величину с(Х).

Так определяют, например, содержание бария в баритовой воде - насыщенном растворе гидроксида бария.

Применение прямой кондуктометрии. Методу прямой кондуктометрии присущи простота, высокая чувствительность. Однако метод малоселективен.

Прямая кондуктометрия имеет ограниченное применение в анализе. Она используется для определения растворимости малорастворимых электролитов, для контроля качества дистиллированной воды и жидких пищевых продуктов (молока, напитков и др.), для определения общего содержания солей в минеральной, морской, речной воде и в некоторых других случаях.

3 Кондуктометрическое титрование

При кондуктометрическом титровании за ходом титрования следят по изменению электропроводности анализируемого раствора, находящегося в кондуктометрической ячейке между двумя инертными электродами (обычно из платинированной платины). По полученным данным вычерчивают кривую кондуктометрического титрования, отражающую зависимость электропроводности титруемого раствора от объема прибавленного титранта. Конечную точку титрования находят чаще всего экстраполяцией участков кривой титрования в области изменения ее наклона.При этом не требуется применение индикаторов, изменяющих окраску вблизи ТЭ.

В кондуктометрическом титровании используют различные типы реакций: кислотно-основные, окислительно-восстановительные, осадительные, процессы комплексообразования. Применение кондуктометрического титрования. Метод кондуктометрического титрования обладает рядом достоинств. Титрование можно проводить в мутных, окрашенных, непрозрачных средах. Чувствительность метода довольно высокая - до ~10~* моль/л; ошибка определения составляет от 0,1 до 2%. Анализ можно автоматизировать. К недостаткам метода относится малая селективность. Понятие о высокочастотном (радиочастотном) кондуктометрическом титровании. За ходом титрования следят с помощью модифицированной переменно-токовой кондуктометрической техники, в которой частота переменного тока может достигать порядка миллиона колебаний в секунду. Обычно электроды помещают (накладывают) на внешней стороне сосуда (кондуктометрической ячейки) для титрования, так что они не соприкасаются с титруемым раствором.

По результатам измерений вычерчивают кривую кондуктометрического титрования. Конечную точку титрования находят экстраполяцией участков кривой титрования в области изменения ее наклона.

ГЛАВА 4. КОНДУКТОМЕТРИЧЕСКИЙ АНАЛИЗ (КОНДУКТОМЕТРИЯ)

4.1 Сущность метода

Полярографический анализ (полярография) основан на использовании следующих зависимостей между электрическими параметрами электрохимической (в данном случае - полярографической) ячейки, к которой прилагается внешний потенциал, и свойствами содержащегося в ней анализируемого раствора.

а)В качественном полярографическом анализе используют связь между величиной приложенного на микроэлектроде внешнего электрического потенциала, при котором наблюдается восстановление (или окисление) анализируемого вещества на микроэлектроде в данных условиях, и природой восстанавливающегося (или окисляющегося) вещества.

б)В количественном полярографическом анализе используют связь между величиной диффузионного электрического тока, и концентрацией определяемого (восстанавливающегося или окисляющегося) вещества в анализируемом растворе. Электрические параметры - величину приложенного электрического потенциала и величину Диффузионного тока - определяют при анализе получаемых поляризационных, или вольт-амперных, кривых, отражающих графически зависимость электрического тока в полярографической ячейке от величины приложенного потенциала микроэлектрода. Поэтому полярографию иногда называют прямой вольтамперометрией.

Классический полярографический метод анализа с применением ртутного капающего (капельного) электрода был разработан и предложен в 1922 г. чешским ученым Ярославом Гейровским (1890-1967), хотя сам ртутный капающий электрод применялся чешским физиком Б. Кучерой еще в 1903 г. В 1925 г. Я. Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые. В дальнейшем были разработаны различные модификации полярографического метода.

Величина среднего диффузионного тока iD определяется уравнением Ильковича (25):

где К- коэффициент пропорциональности, с - концентрация (ммоль/л) полярографически активного вещества-деполяризатора; iD измеряют в микроамперах как разность между предельным током и остаточным током.

Коэффициент пропорциональности К в уравнении Ильковича зависит от целого ряда параметров и равен

K=607nD12m23τ16

где п - число электронов, принимающих участие в электродной окислительно-восстановительной реакции; D - коэффициент диффузии восстанавливающегося вещества (см2/с); т - масса ртути, вытекающей из капилляра в секунду (мг); т - время образования (в секундах) капли ртути при потенциале полуволны (обычно оно составляет 3-5 с).

Так как коэффициент диффузии D зависит от температуры, то и коэффициент пропорциональности К в уравнении Ильковича изменяется при изменении температуры. Для водных растворов в температурном интервале 20-50 °С коэффициент диффузии полярографичски активных веществ-деполяризаторов увеличивается примерно на 3% при росте температуры на один градус, что и приводит к повышению среднего диффузионного тока iD на ~1-2%. Поэтому полярографирование проводят при постоянной температуре, термостатируя полярографическую ячейку обычно при 25 ± 0,5 °С.

Масса ртути т и время каплеобразования т зависят от характеристик ртутного капающего электрода и высоты столбика ртути в капилляре и в резервуаре, связанном с капилляром. Стеклянный капилляр ртутного капающего микроэлектрода обычно имеет внешний диаметр 3-7 мм, внутренний - от 0,03 до 0,05 мм, длину 6-15 см. Высота ртутного столбика от нижнего конца капилляра до верхнего уровня поверхности ртути в резервуаре составляет 40-80 см; Содержание индифферентного электролита в анализируемом полярографируемом растворе должно примерно в 100 раз превышать содержание определяемого вещества-деполяризатора, причем ионы фонового электролита не должны разряжаться в условиях проведения полярографирования до разряда полярографически активного вещества.

Полярографирование проводят с использованием в качестве растворителя воды, водно-органических смесей (вода - этанол, вода - ацетон, вода - диметилформамид и др.) и неводных сред (этанол, ацетон, диметилформамид, диметилсульфоксид и т.д.).

До начала полярографирования через анализируемый раствор пропускают ток инертного газа (азота, аргона и др.) для удаления растворенного кислорода, который также дает полярографическую волну вследствие восстановления по схеме:

2Н+ + 2е = Н202

Н202 + 2Н+ + 2е = 2Н20

Иногда - в случае щелочных растворов - вместо пропускания тока инертного газа в анализируемый раствор прибавляют небольшое количество активного восстановителя - сульфита натрия, метола, которые связывают растворенный кислород, реагируя с ним.

4.2 Количественный полярографический анализ

Из изложенного выше следует, что количественный полярографический анализ основан на измерении диффузионного тока iD как функции концентрации определяемого полярографически активного вещества- деполяризатора в полярографируемом растворе.

При анализе получаемых полярограмм концентрацию определяемого вещества находят методами градуировочного графика, добавок стандарта, стандартных растворов.

а)Метод градуировочного графика используют чаще всего. По этому методу готовят серию стандартных растворов, каждый из которых содержит точно известную концентрацию с определяемого вещества.

Проводят полярографирование каждого раствора (после продувания через него тока инертного газа) в одинаковых условиях, получают полярограммы и находят значения Е12 (одинаковые для всех растворов) и диффузионного тока iD (разные для всех растворов). По полученным данным строят градуировочный график в координатах iD-c, представляющий собой обычно прямую линию в соответствии с уравнением Ильковича.

Затем проводят полярографирование анализируемого раствора с неизвестной концентрацией с(Х) определяемого вещества, получают полярограмму, измеряют величину диффузионного тока iD (Х) и по градуировочному графику находят концентрацию с(Х).

б)Метод добавок стандарта. Получают полярограмму анализируемого раствора с неизвестной концентрацией с(Х) определяемого вещества и находят величину диффузионного тока, т.е. высоту h полярограммы. Затем к анализируемому раствору прибавляют точно известное количество определяемого вещества, повышающее его концентрацию на

величину c(st), снова проводят полярографирование и находят новое значение диффузионного тока - высоту полярограммы h + h.

В соответствии с уравнением Ильковича (25) можно написать:

h = Kc(X),h = K c(st),

откуда

hh = с(Х)c(st) и с(Х) = hhc(st)

в)Метод стандартных растворов. В одинаковых условиях проводят полярографирование двух растворов: анализируемого раствора с неизвестной концентрацией с(Х) и стандартного раствора с точно известной концентрацией c(st) определяемого вещества. На полученных полярограммах находят высоты полярографических волн h(Х) и h(st), отвечающие диффузионному току при концентрациях соответственно с(Х) и c(st). Согласно уравнению Ильковича (25) имеем:

(Х) = Кс(Х), h(st) = Kc(st),

Стандартный раствор готовят так, чтобы его концентрация была бы как можно ближе к концентрации определяемого раствора. При этом условии ошибка определения минимизируется.

3 Применение полярографии

Применение метода. Полярография используется для определения малых количеств неорганических и органических веществ. Разработаны тысячи методик количественного полярографического анализа. Предложены способы полярографического определения практически всех катионов металлов, ряда анионов (бромат-, иодат-, нитрат-, перманганат-ионов), органических соединений различных классов, содержащих диазогруппы, карбонильные, пероксидные, эпоксидные группы, двойные углерод-углеродные связи, а также связи углерод-галоген, азот-кислород, сера-сера.

Метод - фармакопейный, применяется для определения салициловой кислоты, норсульфазола, витамина Вь алкалоидов, фолиевой кислоты, келлина в порошке и в таблетках, никотинамида, пиридоксина гидрохлорида, препаратов мышьяка, гликозидов сердечного действия, а также кислорода и различных примесей в фармацевтических препаратах.

Метод обладает высокой чувствительностью (до 10"5-10Т6 моль/л); селективностью; сравнительно хорошей воспроизводимостью результатов (до ~2%); широким диапазоном применения; позволяет анализировать смеси веществ без их разделения, окрашенные растворы, небольшие объемы растворов (объем полярографической ячейки может составлять всего 1 мл); вести анализ в потоке раствора; автоматизировать проведение анализа."

К недостаткам метода относятся токсичность ртути, ее довольно легкая окисляемость в присутствии веществ-окислителей, относительная сложность используемой аппаратуры.

Другие варианты полярографического метода. Помимо описанной выше классической полярографии, использующей капающий ртутный микроэлектрод с равномерно возрастающим на нем электрическим потенциалом при постоянном электрическом токе, разработаны другие варианты полярографического метода - производная, дифференциальная, импульсная, осциллографическая полярография; переменно-токовая полярография - также в разных вариантах.

ГЛАВА 5. АМПЕРОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ

Сущность метода. Амперометрическое титрование (потенцио-статическое поляризационное титрование) - разновидность вольтамперометрического метода (наряду с полярографией). Оно основано на измерении величины тока между электродами электрохимической ячейки, к которым приложено некоторое напряжение, как функции объема прибавленного титранта. В соответствии с уравнением Ильковича (25):

диффузионный ток iD в полярографической ячейке тем больше, чем выше концентрация с полярографически активного вещества. Если при прибавлении титранта в анализируемый титруемый раствор, находящийся в полярографической ячейке, концентрация такого вещества уменьшается или увеличивается, то соответственно падает или возрастает и диффузионный ток. Точку эквивалентности фиксируют по резкому изменению падения или роста диффузионного тока, что отвечает окончанию реакциит титруемого вещества с титрантом.

Различают амперометрическое титрование с одним поляризуемым электродом, называемое также титрованием по предельному току, полярографическим или поляриметрическим титрованием, и амперометрическое титрование с двумя одинаковыми поляризуемыми электродами, или титрование «до полного прекращения тока», биамперометрическое титрование.

Амперометрическое титрование с одним поляризуемым электродом. Оно основано на измерении тока в полярографической ячейке в зависимости от количества прибавленного титранта при постоянном внешнем потенциале на микроэлектроде, несколько превышающем потенциал полуволны на вольт-амперной кривой титруемого вещества X или титранта Т. Обычно выбранный внешний потенциал соответствует области предельного тока на полярограмме X или Т. Титрование ведут на установке, состоящей из источника постоянного тока с регулируемым напряжением, к которому последовательно присоединены гальванометр и полярографическая ячейка для титрования. Рабочим (индикаторным) электродом ячейки может служить ртутный капающий электрод, неподвижный или вращающийся платиновый либо графитовый электрод. При использовании твердых электродов необходимо перемешивание раствора во время титрования. В качестве электрода сравнения применяют хлор-серебряный или каломельный электроды. Фоном служат, в зависимости от условий, различные полярографически неактивные при данном потенциале электролиты (HN03, H2S04, NH4NO3 и др.).

Вначале получают вольт-амперные кривые (полярограммы) для X и Т в тех же условиях, в которых предполагается проведение амперометрического титрования. На основании рассмотрения этих кривых выбирают значение потенциала, при котором достигается величина предельного тока полярографически активных X или Т. Выбранное значение потенциала поддерживают постоянным в течение всего процесса титрования.

Используемая для амперометрического титрования концентрация титранта Т должна примерно в 10 раз превышать концентрацию X; при этом практически не требуется вводить поправку на разбавление раствора во время титрования. В остальном соблюдают все те условия, которые требуются для получения полярограмм. Требования к термостатированию - менее строгие, чем при прямом полярографировании, поскольку конец титрования определяется не по абсолютному значению диффузионного тока, а по резкому изменению его величины.

В полярографическую ячейку вносят анализируемый раствор, содержащий X, и прибавляют небольшими порциями титрант Т, измеряя каждый раз ток i. Величина тока i зависит от концентрации полярографически активного вещества. В точке эквивалентности величина i резко изменяется.

По результатам амперометрического титрования строят кривые титрования. Кривая амперометрического титрования - это графическое представление изменения величины тока / в зависимости от объема V прибавленного титранта. Кривая титрования строится в координатах ток i - объем V прибавленного титранта Т (или степень оттитрованности).

В зависимости от природы титруемого вещества X и титранта Т кривые амперометрического титрования могут быть различного типа.

Биамперометрическое титрование ведут при энергичном перемеши-вании раствора на установке, состоящей из источника постоянного тока с потенциометром, с которого регулируемая разность потенциалов (0,05- 0,25 В) подается через чувствительный микроамперметр на электроды электрохимической ячейки. В последнюю перед проведением титрования вносят титруемый раствор и прибавляют порциями титрант до резкого прекращения или появления тока, о чем судят по показанию микроамперметра.

Используемые в электрохимической ячейке платиновые электроды периодически очищают, погружая их на ~30 минут в кипящую концентрированную азотную кислоту, содержащую добавки хлористого железа, с последующим промыванием электродов водой.

Биамперометрическое титрование - фармакопейный метод; применяется в иодометрии, нитритометрии, акваметрии, при титровании в не водных средах.

ГЛАВА 6. КУЛОНОМЕТРИЧЕСКИЙ АНАЛИЗ (КУЛОНОМЕТРИЯ)

1 Принципы метода

электрохимический кондуктометрия титрование кулонометрия

Кулонометрический анализ (кулонометрия) основан на использовании зависимости между массой т вещества, прореагировавшего при электролизе в электрохимической ячейке, и количеством электричества Q, прошедшего через электрохимическую ячейку при электролизе только этого вещества. В соответствии с объединенным законом электролиза М Фарадея масса т (в граммах) связана с количеством электричества Q (в кулонах) соотношением (27)

где М - молярная масса вещества, прореагировавшего при электролизе, г/моль; п - число электронов, участвующих в электродной реакции;

96487 Кл/моль - число Фарадея.

Количество электричества Q (в Кл), прошедшее при электролизе через электрохимическую ячейку, равно произведению электрического тока i (в А) на время электролиза τ (в с):

Если измерено количество электричества Q, то согласно (27) можно рассчитать массу т. Это справедливо в том случае, когда все количество электричества Q, прошедшее при электролизе через электрохимическую ячейку, израсходовано только на электролиз данного вещества; побочные процессы должны быть исключены. Другими словами, выход (эффективность) по току должен быть равен 100%.

Поскольку в соответствии с объединенным законом электролиза М. Фарадея для определения массы т (г) прореагировавшего при электролизе вещества необходимо измерить количество электричества Q, затраченное на электрохимическое превращение определяемого вещества, в кулонах, то метод и назван кулонометрией. Главная задача кулонометрических измерений - как можно более точно определить количество электричества Q.

Кулонометрический анализ проводят либо в амперостатическом (гальваностатическом) режиме, т.е. при постоянном электрическом токе i=const, либо при контролируемом постоянном потенциале рабочего электрода (потенциостатическая кулонометрия), когда электрический ток изменяется (уменьшается) в процессе электролиза.

В первом случае для определения количества электричества Q достаточно как можно более точно измерить время электролиза т(с), постоянный ток /(А) и рассчитать величину Q по формуле (10.28).

Во втором случае величину Q определяют либо расчетным способом, либо с помощью химических кулонометров.

Различают прямую кулонометрию и косвенную кулонометрию (кулонометрическое титрование).

Сущность метода. Прямую кулонометрию при постоянном токе применяют редко. Чаще используют кулонометрию при контролируемом постоянном потенциале рабочего электрода или прямую потенциостатическую кулонометрию.

В прямой потенциостатической кулонометрии электролизу подвергают непосредственно определяемое вещество. Измеряют количество электричества, затраченное на электролиз этого вещества, и по уравнению рассчитывают массу т определяемого вещества.

В процессе электролиза потенциал рабочего электрода поддерживают постоянным, Е=const, для чего обычно используют приборы - потенциостаты. Постоянное значение потенциала Е выбирают предварительно на основании рассмотрения вольт-амперной (поляризационной) кривой, построенной в координатах ток i - потенциал Е (как это делают в полярографии), полученной в тех же условиях, в которых будет проводиться электролиз. Обычно выбирают значение потенциала Е, соответствующее области предельного тока для определяемого вещества и несколько превышающее его потенциал полуволны Е12 (на -0,05-0,2 В). При этом значении потенциала, как и в полярографии, фоновый электролит не должен подвергаться электролизу.

По мере протекания процесса электролиза при постоянном потенциале электрический ток в ячейке уменьшается, так как понижается концентрация электроактивного вещества, участвующего в электродной реакции. При этом электрический ток уменьшается со временем по экспо-ненциальному закону от начального значения i0 в момент времени т = О до значения i в момент времени т:

где коэффициент к зависит от природы реакции, геометрии электрохимической ячейки, площади рабочего электрода, коэффициента диффузии определяемого вещества, скорости перемешивания раствора и его объема.

Способы определения количества электричества, прошедшего через раствор, в прямой потепциостатической кулонометрии. Величину Q можно определить расчетными способами либо с помощью химического кулонометра.

а)Расчет вечичины Q по площади под кривой зависимости i от т. Для определения Q без заметной ошибки способ требует практически полного завершения процесса электролиза, т.е. длительного времени. На практике, как уже отмечалось выше, измеряют площадь при значении т, соответствующем

0,001i0 (0,1% от i0).

б)Расчет величины Q на основе зависимости In / от т. В соответствии имеем:

Q = 0∞i0e-kτdτ=i00∞e-kτdτ=i0k

Поскольку

∞i0e-kτdτ= - k-1 e-k∞-e-k0= k-10-1=k-1

Применение прямой кулонометрии. Метод обладает высокими селективностью, чувствительностью (до 10~8-10~9 г или до ~10~5 моль/л), воспроизводимостью (до ~1-2%), позволяет определять содержание микропримесей. К недостаткам метода относятся большие трудоемкость и длительность проведения анализа, необходимость наличия дорогостоящей аппаратуры.

Прямую кулонометрию можно применять для определения - при катодном восстановлении - ионов металлов, органических нитро- и галогенпроизводных; при анодном окислении - хлорид-, бромид-, иодид-,тиоцианат-анионы, ионы металлов в низших степенях окисления при переводе их в более высокие состояния окисления, например: As(IH) -> As(V),Cr(II) -> Cr(III), Fe(II) -» Fe(III), T1(I) -> Tl(III) и т.д.

В фармацевтическом анализе прямую кулонометрию применяют для определения аскорбиновой и пикриновой кислот, новокаина, оксихинолина и в некоторых других случаях.

Как отмечалось выше, прямая кулонометрия довольно трудоемка и продолжительна. Кроме того, в ряде случаев начинают заметно протекать побочные процессы еще до завершения основной электрохимической реакции, что снижает выход по току и может привести к значительным ошибкам анализа. Поэтому чаще применяют косвенную кулонометрию - кулонометрическое титрование.

3 Кулонометрическое титрование

Сущность метода. При кулонометрическом титровании определяемое вещество X, находящееся в растворе в электрохимической ячейке, реагирует с «титрантом» Т - веществом, непрерывно образующемся (генерируемом) на генераторном электроде при электролизе вспомогательного вещества, также присутствующего в растворе. Окончание титрования - момент, когда все определяемое вещество X полностью прореагирует с генерируемым «титрантом» Т, фиксируют либо визуально индикаторным методом, вводя в раствор соответствующий индикатор, меняющий окраску вблизи ТЭ, либо с помощью инструментальных методов - потенциометрически, амперометрически, фотометрически.

Таким образом, при кулонометрическом титровании титрант не прибавляется из бюретки в титруемый раствор. Роль титранта играет вещество Т, непрерывно генерируемое при электродной реакции на генераторном электроде. Очевидно, имеется аналогия между обычным титрованием, когда титрант вводится извне в титруемый раствор и по мере его прибавления реагирует с определяемым веществом, и генерацией вещества Т, которое по мере своего образования также реагирует с определяемым веществом. Поэтому рассматриваемый метод и получил название «кулонометрическое титрование».

Кулонометрическое титрование проводят в амперостатическом (гальваностатическом) или в потенциостатическом режиме. Чаще кулонометрическое титрование проводят в амперостатическом режиме, поддерживая электрический ток постоянным в течение всего времени электролиза.

Вместо объема прибавленного титранта в кулонометрическом титровании измеряют время т и ток i электролиза. Процесс образования вещества Т в кулонометрической ячейке во время электролиза называется генерация титранта.

Кулонометрическое титрование при постоянном токе. При кулонометрическом титровании в амперостатическом режиме (при посто-янном токе) измеряют время т, в течение которого проводился электролиз, и количество электричества Q, израсходованное при электролизе, рассчитывают по формуле, после чего находят массу определяемого вещества X по соотношению.

Так, например, стандартизацию раствора хлороводородной кислоты НС1 методом кулонометрического титрования проводят путем титрования ионов водорода Н30+ стандартизуемого раствора, содержащего НС1, электрогенерируемыми на платиновом катоде гидроксид-ионами ОН- при электролизе воды:

Н20 + 2е = 20Н- + Н2

Образовавшийся титрант - гидроксид-ионы - реагирует с ионамиН30+ в растворе:

Н30+ + ОН- = 2Н20

Титрование ведут в присутствии индикатора фенолфталеина и прекращают при появлении светло-розовой окраски раствора. Зная величину постоянного тока i (в амперах) и время т (в секундах), затраченное на титрование, рассчитывают по формуле (28) количество электричества Q (в кулонах) и по формуле (27) - массу (в граммах) прореагировавшей НС1, содержавшуюся в аликвоте стандартизуемого раствора НС1, внесенного в кулонометрическую ячейку (в генераторный сосуд).

Условия проведения кулонометрического титрования. Из вышеизложенного следует, что условия проведения кулонометрического титрования должны обеспечить 100%-ный выход по току. Для этого необходимо выполнять, по крайней мере, следующие требования.

а)Вспомогательный реагент, из которого на рабочем электроде гнерируется титрант, должен присутствовать в растворе в большом избытке по отношению к определяемому веществу (~ 1000-кратный избыток). В этих условиях обычно устраняются побочные электрохимические реакции, основная из которых - это окисление или восстановление фонового электролита, например, ионов водорода:

Н+ + 2е = Н2

б)Величина постоянного тока i=const при проведении электролиза должна быть меньше величины диффузионного тока вспомогательного реагента во избежание протекания реакции с участием ионов фонового электролита.

в)Необходимо как можно точнее определять количество электричества, израсходованное при проведении электролиза, для чего требуется точно фиксировать начало и конец отсчета времени и величину тока электролиза.

Кулонометрическое титрование при постоянном потенциале.

Потенциостатический режим в кулонометрическом титровании используется реже.

Кулонометрическое титрование в потенциостатическом режиме ведут при постоянном значении потенциала, соответствующем потенциалу разряда вещества на рабочем электроде, например, при катодном восстановлении катионов металлов М"* на платиновом рабочем электроде. По мере протекания реакции потенциал остается постоянным до тех пор, пока прореагируют все катионы металла, после чего он резко уменьшается, поскольку в растворе уже нет потенциалопределяющих катионов металла.

Применение кулонометрического титрования. В кулонометрическом титровании можно использовать все типы реакций титриметрического анализа: кислотно-основные, окислительно-восстановительные, осадительные, реакции комплексообразования.

Так, малые количества кислот можно определять кулонометрическим кислотно-основным титрованием электрогенерированными ОН--ионами, образующимися при электролизе воды на катоде:

Н20 + 2е = 20Н" + Н2

Можно титровать и основания ионами водорода Н+, генерируемыми на аноде при электролизе воды:

Н20-4е = 4Н+ + 02

При окислительно-восстановительном бромометрическом кулонометрическом титровании можно определять соединения мышьяка(Ш), сурьмы(Ш), иодиды, гидразин, фенолы и другие органические вещества. В роли титранта выступает электрогенерируемый на аноде бром:

ВГ -2е = Вг2

Осадительным кулонометрическим титрованием можно определять галогенид-ионы и органические серосодержащие соединения электрогенерированными катионами серебра Ag+, катионы цинка Zn2+ - электрогенерированными ферроцианид-ионами и т.д. Комплексонометрическое кулонометрическое титрование катионов металлов можно проводить анионами ЭДТА, электрогенерированными на катоде из комплексоната ртути(И).

Кулонометрическое титрование обладает высокой точностью, широким диапазоном применения в количественном анализе, позволяет определять малые количества веществ, малостойкие соединения (посколькуони вступают в реакции сразу же после их образования), например,меди(1), серебра(Н), олова(П), титана(Ш), марганца(Ш), хлора, брома и др.

К достоинствам метода относится также и то, что не требуются приготовление, стандартизация и хранение титранта, так как он непрерывно образуется при электролизе и сразу же расходуется в реакции с определяемым веществом.

ЗАКЛЮЧЕНИЕ

Электрохимические методы анализа основаны на процессах, протекающих на электродах или межэлектродном пространстве. Электрохимические методы анализа являются одними из старейших физико-химических методов анализа (некоторые описаны в конце 19 в.). Их достоинством является высокая точность и сравнительная простота, как оборудования, так и методики анализа. Высокая точность определяется весьма точными закономерностями, используемыми в электрохимических методах анализа, например, закон Фарадея. Большим удобством является то, что в них используют электрические воздействия, и то, что результат этого воздействия (отклик) тое получается в виде электрического сигнала.

Это обеспечивает высокую скорость и точность отсчета, открывает широкие возможности для автоматизации. Электрохимические методы анализа отличаются хорошей чувствительностью и селективностью, в ряде случаев их можно отнести к микроанализу, так как для анализа иногда достаточно менее 1 мл раствора. Инструментом их служит электрохимическая ячейка, представляющая собой сосуд с раствором электролита, в который погружены как минимум два электрода. В зависимости от решаемой задачи различными могут быть форма и материал сосуда, число и природа электродов, раствора, условия анализа (прилагаемое напряжение (ток) и регистрируемый аналитический сигнал, температура, перемешивание, продувка инертным газом и тому подобное). Определяемое вещество может входить как в состав электролита, заполняющего ячейку, так и в состав одного из электродов.

Электрохимические методы анализа играют большую роль в современном мире. В наше время особенно важна забота об экологии. С помощью этих методов можно определить содержание огромного количества различных органических и неорганических веществ. Сейчас они более эффективны для определения опасных веществ.

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. Различают две группы электрохимических методов:

1. Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.

2. Методы с наложением постороннего потенциала, основанные на измерении: а) электрической проводимости растворов - кондуктометрия ; б) количества электричества, прошедшего через раствор - кулонометрия ; в) зависимости величины тока от приложенного потенциала - вольт-амперометрия ; г) времени, необходимого для прохождения электрохимической реакции - хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия). В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.

Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент , в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода - индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом - электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами - потенциометрами.

В методах с наложением постороннего потенциала применяют электрохимическую ячейку , названную так потому, что на электродах ячейки под действием наложенного потенциала происходит электролиз - окисление или восстановление вещества. В кондуктометрическом анализе используют кондуктометрическую ячейку, в которой замеряют электрическую проводимость раствора. По способу применения электрохимические методы можно классифицировать на прямые, в которых концентрацию веществ измеряют по показанию прибора, и электрохимическое титрование, где индикацию точки эквивалентности фиксируют с помощью электрохимических измерений. В соответствии с этой классификацией различают потенциометрию и потенциометрическое титрование, кондуктометрию и кондуктометрическое титрование и т.д.

Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.

Потенциометрия объединяет методы, основанные на измерении эдс обратимых электрохимических цепей, когда потенциал рабочего электрода близок к равновесному значению.

Вольтамперометрия основана на исследовании зависимости тока поляризации от напряжения, прикладываемого к электрохимической ячейке, когда потенциал рабочего электрода значительно отличается от равновесного значения. Широко используется для определения веществ в растворах и расплавах (например, полярография, амперометрия).

Кулонометрия объединяет методы анализа, основанные на измерении количества вещества, выделяющегося на электроде в процессе электрохимической реакции в соответствии с законами Фарадея . При кулонометрии потенциал рабочего электрода отличается от равновесного значения.

Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению.

Диэлектрометрия объединяет методы анализа, основанные на измерении диэлектрической проницаемости вещества, обусловленной ориентацией в электрическом поле частиц (молекул, ионов), обладающих дипольным моментом. Диэлектрометрическое титрование используют для анализа растворов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Иркутский национальный исследовательский технический университет»

Кафедра металлургии цветных металлов

(наименование кафедры)

«Электрохимические методы исследования»

Реферат по дисциплине

«Физико-химические методы исследования металлургических процессов»

Выполнил студент группы МЦМ-16-1

Захаренков Р. И.

Проверил преподаватель кафедры МЦМ

Кузьмина М.Ю.

Иркутск 2017 г.

ВВЕДЕНИЕ

Электрохимия - раздел физической химии, который рассматривает системы, содержащие ионы (растворы или расплавы электролитов) и процессы, протекающие на границе двух фаз с участием заряженных частиц.

Первые представления о взаимосвязи химических и электрических явлений были известны в XVIII веке, так как было выполнено огромное количество физико-химических экспериментов с электрическим и грозовыми разрядами, с зарядами, находящимися в лейденских банках, но все они имели случайный характер из-за отсутствия постоянного мощного источника электрической энергии. Зарождение электрохимии связано с именами Л. Гальвани и А. Вольта. Занимаясь исследованием физиологических функций лягушки, Гальвани случайно создал электрохимическую цепь. Она состояла из двух различных металлов и препарированной лапки лягушки. Лапка одновременно являлась электролитом и индикатором электрического тока, но вывод был дан неправильный, т. е., согласно Гальвани, этот электрический ток, который возникал в цепи, имел животное происхождение, т. е. был связан с функциональными особенностями организма лягушки (теория «животного электричества»).

Правильное толкование опытам Гальвани дал А. Вольта. Он создал первую батарею гальванических элементов - вольтов столб. Элементы батареи состояли из медных и цинковых дисков, а электролитом служил пропитанный соленой водой или кислотой губчатый материал. Именно такое соединение позволило получить электрический ток. Вскоре трудами великих ученых А. Вольта, Дж. Даниэля, Б. С. Якоби, П. Р. Багратиона, Г. Плантэ и др. появились удобные в работе мощные гальванические элементы и аккумуляторы. Затем А. Вольта разработал ряд напряжений металлов. Если два различных металла привести в соприкосновение, а затем разъединить, то при помощи физических средств, например, электроскопа, можно увидеть, что один металл приобрел положительный заряд, а другой - отрицательный. Этот ряд металлов, в котором каждый предшествующий металл заряжается положительно, но после контакта с любым последующим, т. е. ряд Вольта, оказался аналогичным ряду напряжений.

Далее, в начале XIX века, был разработан электролиз, а М. Фарадей установил количественные законы электролиза. Большой вклад в развитие электрохимии внесли ученые: С. А. Аррениус, В. Ф. Оствальд, Р. А. Колли, П. Дебай, В. Нернст, Г. Гельмгольц и др. Сейчас электрохимия делится на теоретическую и прикладную. Благодаря использованию электрохимических методов, она связана с другими разделами физической химии, а также с аналитической химией и другими науками.

электрохимический потенциометрия кондуктометрия кулонометрия

1 . ЭЛЕТРОХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Необходимость в использовании разнообразных методов для исследования электрохимических процессов обусловлена широкой областью изменения скорости переноса электрона в электродных реакциях. Каждый из методов имеет некоторый предел по определяемому значению плотности тока обмена, выше которого электрохимические параметры электродной реакции определить нельзя. Применительно к каждому конкретному объекту необходимо выбрать тот метод, который дает максимальный объем надежной информации. При проведении электрохимических исследований необходимо знать химический состав исходных веществ и продуктов реакции. Для определения состава электролита используют различные физико-химические методы: спектрофотометрический, потенциометрический, аналитический и другие. При проведении электрохимических исследований необходимо соблюдать следующие условия.

1. Максимальная чистота используемых реактивов; состав электродов должен быть строго известен, как известно и состояние их поверхностей. Следует следить за тем, чтобы в процессе измерений поверхность электродов не претерпевала изменений.

2. Конструкция электрохимической ячейки и расположенный в ней электродов должны обеспечивать равномерное распределение тока по всей поверхности рабочего электрода.

3. Измерение проводить при строго контролируемой температуре.

4. Поддерживать постоянные давления и состав газовой фазы над электролитом. Как правило, исследования проводят в среде инертного газа (N 2 , Ar, Ne, He H 2), поскольку кислород газовой фазы может оказывать существенное влияние на механизм процесса.

5. Необходимо обеспечить такие условия эксперимента, при которых падение потенциала в диффузной части двойного электрического слоя было бы минимальным или точно известным. Для снижения этого потенциала используют, как правило, фоновый электролит, концентрация которого должна быть не менее, чем в 20 раз выше, чем у основного вещества. Однако предварительно следует убедиться, что фоновый электролит не искажает поляризационной кривой изучаемой реакции.

6. Точное измерение потенциала рабочего электрода. Для этого необходимо устранить диффузионный потенциал между исследуемым электролитом и электролитом электрода сравнения. Этот потенциал принимает максимальное значение при приближении к предельному току и может, существенно исказить результаты измерений. Для устранения диффузионного потенциала между исследуемым электролитом и электролитом электрода сравнения желательно: а) выбрать электрод сравнения, который имеет тот же электролит по составу, что и исследуемый. Например, при исследованиях в хлоридных растворах удобно применять хлор-серебрянный, каломельный, хлорный электроды; в кислых сульфатных растворах - ртутно-сульфатные электроды и т.п.; б) использовать электрод сравнения с таким электролитом, на границе которого с исследуемым электролитом диффузионный потенциал может быть рассчитан по известным формулам.

При измерении в растворах с постоянной ионной силой, а при больших концентрациях фона - с постоянной ионной концентрацией можно, в принципе, использовать любой электрод сравнения. Диффузионный потенциал в этом случае может быть и весьма велик, но и постоянен - его можно рассчитать или определить экспериментально.

Во всех случаях изучения кинетики электрохимических процессов необходимо измерение плотности тока. Обычно начинают с того, что выясняют методами аналитической химии, кулонометрии, протекает ли на электроде только одна изучаемая реакция или она осложнена побочными. В случае протекания побочных реакций, надо выяснить, какая доля тока приходится только на осуществление изучаемой реакции (построить так называемую парциальную поляризационную характеристику для изучаемой реакции).

Наиболее просто механизм электродной реакции можно интерпретировать лишь в случае, когда исходное вещество превращается в один продукт со 100%-ным выходом по току. Проверка реакции на соответствие закону Фарадея или проведение кулонометрических измерений позволяет одновременно определить число электронов, участвующих в суммарной электродной реакции. Знание состава исходного вещества и продукта реакции, а также общего числа переносимых электронов, дает возможность записать уравнение суммарной электродной реакции.

Следующим шагом в изучении механизма электродной реакции является выяснение того, какая стадия является лимитирующей.

Если лимитирующей стадией является стадия разряда -ионизации, а все другие протекают обратимо, то основные кинетические параметры процесса можно определить графически или аналитически, применяя к поляризационным характеристикам уравнения теории замедленного разряда .

1.1 Электрохимические методы анализа

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. Различают две группы электрохимических методов:

1. Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.

2. Методы с наложением постороннего потенциала, основанные на измерении:

а) Электрической проводимости растворов? кондуктометрия ;

б) Количества электричества, прошедшего через раствор? кулонометрия ;

в) Зависимости величины тока от приложенного потенциала? вольт-амперометрия ;

г) Времени, необходимого для прохождения электрохимической реакции - хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия).

В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.

Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент , в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода - индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом - электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами - потенциометрами .

В методах с наложением постороннего потенциала применяют электрохимическую ячейку , названную так потому, что на электродах ячейки под действием наложенного потенциала происходит электролиз - окисление или восстановление вещества. В кондуктометрическом анализе используют кондуктометрическую ячейку, в которой замеряют электрическую проводимость раствора. По способу применения электрохимические методы можно классифицировать на прямые, в которых концентрацию веществ измеряют по показанию прибора, и электрохимическое титрование, где индикацию точки эквивалентности фиксируют с помощью электрохимических измерений. В соответствии с этой классификацией различают потенциометрию и потенциометрическое титрование, кондуктометрию и кондуктометрическое титрование и т.д.

Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.

1.2 Потенциометрия

Потенциометрия основана на измерении разности электрических потенциалов, возникающих между разнородными электродами, опущенными в раствор с определяемым веществом. Электрический потенциал возникает на электродах при прохождении на них окислительно-восстановительной (электрохимической) реакции. Окислительно-восстановительные реакции протекают между окислителем и восстановителем с образованием окислительно-восстановительных пар, потенциал Е которых определяется по уравнению Нернста концентрациями компонентов пар [ок] и [вос]:

где Е° - стандартный электродный потенциал, В;

n - число электронов, участвующих в процессе.

Потенциометрические измерения проводят, опуская в раствор два электрода - индикаторный, реагирующий на концентрацию определяемых ионов, и стандартный электрод или электрод сравнения, относительно которого измеряется потенциал индикаторного. Применяют несколько видов индикаторных и стандартных электродов.

Электроды первого рода обратимы относительно ионов металла, из которого состоит электрод. При опускании такого электрода в раствор, содержащий катионы металла, образуется электродная пара: M n + /M .

Электроды второго рода чувствительны к анионам и представляют собой металл М, покрытый слоем нерастворимой его соли МА с анионом A -, к которому чувствителен электрод. При контакте такого электрода с раствором, содержащим указанный анион A -, возникает потенциал Е, величина которого зависит от произведения растворимости соли

ПР MA и концентрации аниона [A -] в растворе.

Электродами второго рода являются хлорсеребряный и каломельный. Насыщенные хлорсеребряный и каломельный электроды поддерживают постоянный потенциал и применяют в качестве электродов сравнения, по отношению к которым измеряется потенциал индикаторного электрода.

Инертные электроды - пластина или проволока, изготовленная из трудноокисляемых металлов - платины, золота, палладия. Применяются они для измерения Е в растворах, содержащих окислительно-восстановительную пару (например, Fe 3+ /Fe 2+).

Мембранные электроды различного типа имеют мембрану, на которой возникает мембранный потенциал Е. Величина Е зависит от разности концентраций одного и того же иона по разным сторонам мембраны. Простейшим и наиболее употребляемым мембранным электродом является стеклянный электрод.

Смешивание нерастворимых солей типа AgBr, AgCl, AgI и других с некоторыми пластмассами (каучуки, полиэтилен, полистирол) привело к созданию ион-селективных электродов на Br -, Cl -, I -, избирательно адсорбирующих из раствора указанные ионы вследствие правила Панета - Фаянса - Гана. Так как концентрация определяемых ионов вне электрода отличается от таковой внутри электрода, равновесия на поверхностях мембраны отличаются, что приводит к возникновению мембранного потенциала.

Для проведения потенциометрических определений собирают электрохимическую ячейку из индикаторного электрода сравнения, который опускают в анализируемый раствор и подсоединяют к потенциометру. Применяемые в потенциометрии электроды имеют большое внутреннее сопротивление (500-1000 МОм), поэтому существуют типы потенциометров представляют собой сложные электронные высокоомные вольтметры. Для измерения ЭДС электродной системы в потенциометрах применяют компенсационную схему, позволяющую уменьшить ток в цепи ячейки.

Наиболее часто потенциометры применяют для прямых измерений рН, показатели концентраций других ионов pNa, pK, pNH?, pCl и мВ. Измерения проводят, используя соответствующие ион-селективные электроды.

Для измерения рН применяют стеклянный электрод и электрод сравнения - хлорсеребряный. Перед проведением анализов необходимо проверить калибровку рН-метров по стандартным буферным растворам, фиксаналы которых прикладываются к прибору.

рН-метры помимо прямых определений рН, pNa, pK, pNH?, pCl и других позволяют проводить потенциометрическое титрование определяемого иона.

1.3 Потенциометрическое титрование

Потенциометрическое титрование проводят в тех случаях, когда химические индикаторы использовать нельзя или при отсутствии подходящего индикатора.

В потенциометрическом титровании в качестве индикаторов используют электроды потенциометра, опушенные в титруемый раствор. При этом применяют электроды, чувствительные к титруемым ионам. В процессе титрования изменяется концентрация ионов, что регистрируется на шкале измерительного пробора потенциометра. Записав показания потенциометра в единицах рН или мВ, строят график их зависимости от объема титранта (кривую титрования), определяют точку эквивалентности и объем титранта, израсходованный на титрование. По полученным данным строят кривую потенциометрического титрования.

Кривая потенциометрического титрования имеет вид, аналогичный кривой титрования в титриметрическом анализе. По кривой титрования определяют точку эквивалентности, которая находится в середине скачка титрования. Для этого проводят касательные к участкам кривой титрования и по середине касательной скачка титрования определяют точку эквивалентности. Наибольшее значение изменения ? рН/?V приобретает в точке эквивалентности.

Еще более точно точку эквивалентности можно определить методом Грана, по которому строят зависимость ? V/?Е от объема титранта. Методом Грана можно проводить потенциометрическое титрование, не доводя его до точки эквивалентности.

Потенциометрическое титрование применяют во всех случаях титриметрического анализа.

При кислотно-основном титровании используют стеклянный электрод и электрод сравнения. Поскольку стеклянный электрод чувствителен к изменениям рН среды, при их титровании на потенциометре регистрируются изменения рН среды. Кислотно-основное потенциометрическое титрование с успехом применяют при титровании слабых кислот и оснований (рК?8). При титровании смесей кислот необходимо, чтобы их рК отличались больше, чем на 4 единицы, в противном случае часть более слабой кислоты оттитровывается вместе с сильной, и скачок титрования выражен не четко.

Это позволяет использовать потенциометрию для построения экспериментальных кривых титрования, подбор индикаторов для титрования и определения констант кислотности и основности.

При осадительном потенциометрическом титровании применяют в качестве индикатора электрод из металла, составляющего с определяемыми ионами электродную пару.

При комплексометрическом титровании используют: а) металлический электрод, обратимый к иону определяемого металла; б) платиновый электрод при наличии в растворе окислительно-восстановительной пары. При связывании титрантом одного из компонентов редокс-пары меняется его концентрация, что вызывает изменения потенциала индикаторного платинового электрода. Применяются также обратное титрование избытка раствора ЭДТА, добавленного к соли металла, раствором соли железа (III).

При окислительно-восстановительном титровании применяют электрод сравнения и платиновый индикаторный электрод, чувствительный к окислительно-восстановительным парам.

Потенциометрическое титрование - один из наиболее употребляемых методов инструментального анализа вследствие простоты, доступности, селективности и широких возможностей.

1.4 Кондуктометрия. Кондуктометрическое титрование

Кондуктометрия основана на измерении электрической проводимости раствора. Если в раствор вещества поместить два электрода и подать на электроды разность потенциалов, то через раствор потечет электрический ток. Как и каждый проводник электричества, растворы характеризуются сопротивлением R и обратной ему величиной - электрической проводимостью L :

где R - сопротивление, Ом;

Удельное сопротивление, Ом. см;

S - площадь поверхности, см 2 .

где L - электрическая проводимость, Ом- 1 ;

R - сопротивление, Ом.

Кондуктометрический анализ проводят с помощью кондуктометров - приборов, измеряющих сопротивление растворов. По величине сопротивления R определяют обратную ему по величине электрическую проводимость растворов L .

Определение концентрации растворов осуществляют прямой кондуктометрией и кондуктометрическим титрованием. Прямая кондуктометрия используется для определения концентрации раствора по калибровочному графику. Для составления калибровочного графика замеряют электрическую проводимость серии растворов с известной концентрацией и строят калибровочный график зависимости электрической проводимости от концентрации. Затем измеряют электрическую проводимость анализируемого раствора и по графику определяют его концентрацию.

Чаще применяют кондуктометрическое титрование . При этом в ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют соответствующим титрантом. Титрант добавляют равными порциями. После добавления каждой порции титранта замеряют электрическую проводимость раствора и строят график зависимости между электрической проводимостью и объемом титранта. При добавлении титранта происходит изменение электрической проводимости раствора в т.э. наступает перегиб кривой титрования.

От п одвижности ионов зависит электрическая проводимость раствора: чем выше подвижност ь ионов, тем больше электрическая проводимость раствора.

Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, в отсутствии химических индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы веществ (до 10- 4 моль/дмі). Кондуктометрическим титрованием анализируют смеси веществ, т.к. различия в подвижности различных ионов существенны и их можно дифференцированно оттитровывать в присутствии друг друга.

Кондуктометрический анализ легко автоматизировать, если раствор титранта подавать из бюретки с постоянной скоростью, а изменение электрической проводимости раствора регистрировать на самописце.

Эта разновидность кондуктометрии получила название хроно - кондуктометрического анализа .

В кислотно-основном титровании кондуктометрическим путем можно определять сильные кислоты, слабые кислоты, соли слабых оснований и сильных кислот.

В осадительном кондуктометрическом титровании электрическая проводимость титруемых растворов сначала уменьшается или остается на некотором постоянном уровне вследствие связывания титруемого электролита в осадок, после т.э. при появлении избытка титранта - снова возрастает.

В комплексо метрическом кондуктометрическом титровании изменения электрической проводимости раствора наступают вследствие связывания катионов металла в комплекс с ЭДТА.

Окислительно-восстановительное кондуктометрическое титро - вание основано на изменении концентрации реагирующих ионов и появлении в растворе новых ионов, что изменяет электрическую проводимость раствора.

В последние годы получило развитие высокочастотная кондуктометрия , в которой электроды с раствором не контактируют, что важно при анализе агрессивных сред и растворов в закрытых сосудах.

Получила развитие два варианта - прямая высокочастотная кондуктометрия и высокочастотное титрование.

Прямая высокочастотная кондуктометрия применяется для определения влажности веществ, зерна, древесины, концентрации растворов в закрытых сосудах - ампулах, при анализе агрессивных жидкостей.

Высокочастотное титрование проводят на специальных титраторах - ТВ-6, ТВ-6Л.

Высокочастотное кондуктометрическое титрование проводят по типу кислотно-основного, окислительно-восстановительного или осадительного титрования в тех случаях, когда отсутствует подходящий индикатор или при анализе смесей веществ.

1.5 Кулонометрия. Кулонометрическое титрование

В кулонометрии вещества определяют измерением количества электричества, затраченное на их количественное электрохимическое превращение. Кулометрический анализ проводят в электролитической ячейке, в которую помещают раствор определяемого вещества. При подаче на электроды ячейки соответствующего потенциала происходит электрохимическое восстановление или окисление вещества. Согласно законам электролиза, открытым Фарадеем, количество вещества, прореагировавшего на электроде, пропорционально количеству электричества, прошедшего через раствор:

где g - масса, выделяющегося вещества, г;

n - количество электронов, переносимых в электродном процессе;

F - число Фарадея (F = 96485 Кл/моль);

I - сила тока, А;

t - время, с;

M - молярная масса выделяющегося вещества, г/моль.

Кулонометрический анализ позволяет определять вещества, не осаждающиеся на электродах или улетучивающиеся в атмосферу при электрохимической реакции.

Различают кулонометрию прямую и кулонометрическое титрование . Высока точность и чувствительность методов измерения электрического тока обеспечивает кулонометрическому анализу уникальную точность 0,1-0,001%, и чувствительность до 1 10 -8 ? 1 10 -10 г. Поэтому кулонометрический анализ применяется для определения микропримесей и продуктов разрушения веществ, что важно при контроле их качества.

Для индикации т.э. при кулонометрическом титровании можно применять химический и инструментальные методы - добавление индикаторов, обнаружение окрашенных соединений фотометрическим или спектрофотометрическим путём.

В отличии от других методов анализа кулонометрия может быть полностью автоматизирована, что сводит к минимуму случайные ошибки определения. Эта особенность использована при создании автоматических кулонометрических титраторов - чувствительных приборов, применяющихся для особо точных анализов, когда другие методы оказываются недостаточно чувствительными. При анализе веществ, малорастворимых в воде, кулонометрию можно проводить на электродах из ацетиленовой сажи, являющиеся хорошим адсорбентом и извлекающий такие вещества из реакционной среды с достаточной полнотой. Кулонометрическое титрование - перспективный метод инструментального анализа. Он может найти широкое применение для решения ряда специальных аналитических задач - анализа примесей, малых количеств лекарственных препаратов, определение в биологическом материале и окружающей среде токсических веществ, микроэлементов и других соединений .

ЗАКЛЮЧЕНИЕ

В работе выполнен обзор основных электрохимических методов исследования, подробно изложен их принцип, применение, преимущества и недостатки.

Электрохимические методы анализа -- группа методов количественного химического анализа, основанные на использовании электролиза.

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Основы современного электрохимического анализа. Будников Г.К., Майстренко В.Н., Вяселев М.Р., М., Мир, 2003.

2. Дж. Плэмбек, под ред. С. Г. Майрановского Электрохимические методы анализа. Основы теории и применение: пер. с англ. / Видання: Мир, 1985.

3. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия - М.: химия, 2001. 624 с.

4. СТО 005-2015. Система менеджмента качества. Учебно-методическая деятельность. Оформление курсовых проектов (работ) и выпускных квалификационных работ технических специальностей.

Размещено на Allbest.ru

...

Подобные документы

    Классификация электрохимических методов анализа, сущность вольтамперометрии, кондуктометрии, потенциометрии, амперометрии, кулонометрии, их применение в охране окружающей среды. Характеристика химико-аналитического оборудования и основные фирмы-продавцы.

    курсовая работа , добавлен 08.01.2010

    Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Классификация электрохимических методов анализа. Потенциометрическое, кондуктометрическое, кулонометрическое титрование.

    реферат , добавлен 07.01.2011

    Классификация электрохимических методов анализа. Потенциометрическое определение концентрации вещества в растворе. Принцип кондуктометрии. Типы реакций при кондуктометрическом титровании. Количественный полярографический анализ. Прямая кулонометрия.

    курсовая работа , добавлен 04.04.2013

    Сущность электроаналитических методов, возможность получить экспериментальную информацию о кинетике и термодинамике химических систем. Достоинства, недостатки и пригодность вольтамперометрии, кондуктометрии, потенциометрии, амперометрии и кулонометрии.

    реферат , добавлен 20.11.2009

    Общая характеристика потенциометрического анализа. Индикаторные электроды (электронообменные и ионоселективные). Виды потенциометрического метода анализа. Прямая потенциометрия и потенциометрическое титрование. Измерение ЭДС электрохимических цепей.

    курсовая работа , добавлен 08.06.2012

    Общие понятия, условия проведения и классификация электрохимических методов анализа. Потенциометрический анализ (потенциометрия). Амперометрическое титрование (потенциометрическое поляризационное титрование). Количественный полярографический анализ.

    реферат , добавлен 01.10.2012

    Электрохимические методы исследования, их классификация и сущность история возникновения. Определение концентрации кислот методом кондуктометрического титрования; потенциалов электродов, ЭДС гальванического элемента, электрохимического эквивалента меди.

    курсовая работа , добавлен 15.12.2014

    Изучение метода потенциометрического анализа. Анализ и оценка объектов исследований. Изучение методики потенциометрического анализа в приложении к данному объекту. Определение возможности применения методов потенциометрического анализа мясных продуктов.

    курсовая работа , добавлен 16.09.2017

    Основные электрохимические методы анализа. Общая характеристика потенциометрического анализа. Виды потенциометрического метода анализа. Применение гальванического элемента, включающего два электрода. Порядок измерения потенциала индикаторного электрода.

    курсовая работа , добавлен 11.08.2014

    Классификация инструментальных методов анализа по определяемому параметру и способу измерения. Сущность потенциометрического, амперометрического, хроматографического и фотометрического титрования. Качественное и количественное определение хлорида цинка.