Что такое векторные диаграммы и для чего они нужны. Электрические потенциалы сердца, способы отведения электрокардиограммы Источником электродвижущей силы является сердце

Чтоб понять, как работает электрокардиограф, какие процессы в организме он регистрирует, и что показывает электрокардиограмма — надобно описать суть физических процессов, происходящих при сокращении сердечной мышцы.

Восстановим в памяти элементарные познания из курса школьной физики и алгебры.

Труд сердечной мышцы — это электрический процесс, всегда текущий в организме. Пространство, в котором наблюдается поступок электрических сил, называется электрическим полем. Электрическое поле подразумевает существование двух зарядов — положительного и отрицательного. Подобный тандем зарядов называется электрическим диполем. На рисунке, с помощью силовых линий, изображено электрическое поле диполя. Между отрицательным и положительным зарядом находится нулевая черта, на которой величина заряда равна нулю. В точке А находящейся на расстоянии R от центра диполя (дистанция R много больше расстояния между зарядами), поле E (направленное по касательной к силовой линии) разложено на две компоненты: E1 — параллельную оси диполя и E2 — перпендикулярную к ней.

Электрический диполь создает разность потенциалов. Вообще, чтоб в любой электрической цепи начал протекать ток, необходима некая внешняя мочь неэлектростатической природы. Например, электрический ток, какой мы извлекаем в бытовых условиях из электрической розетки — по природе, это энергия падающей воды на ГЭС, или энергия расщепляемого атома на АЭС, или тепловая энергия угля на ТЭЦ. Электрический ток, получаемый в автомобиле — это энергия химических превращений в аккумуляторе, или энергия сжигаемого бензина в двигателе. Электрический ток, заставляющий трудиться наше сердце, получается в результате биохимических процессов, всегда текущих в организме. Очень точно это было подмечено в одной из песен некогда популярной рок-группы «Круиз»: «Что наша существование — обмен веществ в природе».

Но, вернемся к нашим «баранам». Размер, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока называется электродвижущей силою (ЭДС). Вектор ЭДС диполя изображается отрезком ровный, соединяющим оба его полюса, и направлен от отрицательного к положительному заряду.

Лишь что мы использовали понятие «вектора». Напомним вкратце, что это такое. В точных науках различают скалярные и векторные величины. Скалярные величины не имеют направления в пространстве: масса, площадь, объем. Векторы, кроме абсолютной величины, имеют еще и курс в пространстве. Векторы можно складывать и вычитать. Более подробно об этом написано на странице Вектор — это попросту.

Вернемся к нашему диполю. ЭДС является векторной величиной, т.к. характеризуется величиной и направлением в пространстве. Изображается ЭДС в виде ровный со стрелкой на конце. Длина этой ровный характеризует величину ЭДС, а местоположение в пространстве — курс.

Нулевая изопотенциальная линия (изопотенциальная — значит соединяющая точки с одинаковым потенциалом) разделяет поле диполя на две половины — положительное и отрицательное поле. Изопотенциальные линии, расположенные в положительном поле, называются положительными; в отрицательном поле — отрицательными. На рисунке изопотенциальные линии изображены в виде концентрических эллипсов, расположенных вкруг положительного и отрицательного зарядов. Наибольший отрицательный заряд находится рядышком с нулевой линией со стороны отрицательного поля, максимальный положительный — со стороны положительного поля. Мочь заряда убывает обратно пропорционально квадрату расстояния от него.

Родоначальник электрокардиографии Вильям Эйнтховен рассматривал сердце, будто источник электрического тока (во время возбуждения которого в организме образуется электрическое поле), расположенный в центре треугольника, ограниченного правой и левой рукой, и левой ногой (треугольник Эйнтховена). Им было сделано допущение, что тело человека — это провожатый тока с постоянным электрическим сопротивлением во всех участках. Изнаночная, правая рука, и левая нога принимались им за три равноудаленные товарищ от друга и от центра (в котором находится сердце) точки, лежащих в одной фронтальной плоскости. Эйнтховен предположил, что, возникающий во пора возбуждения сердца, вектор ЭДС смещался также лишь во фронтальной плоскости. В дальнейшем эта теория была дополнена и переработана, т.к. различные участки тела человека обладают различным сопротивлением, а электрическое поле сердца всегда меняет величину и направление и меняется не лишь во фронтальной проекции. Дальнейшие многочисленные исследования подтвердили применимость теории диполя в клинической электрокардиографии.

Для измерения величины потенциала в различных точках поля используют гальванометры — основной узел электрокардиографа. ЭДС измеряется при помощи двух электродов, которые подсоединяются к положительному и отрицательному полюсам гальванометра.

У гальванометра существует два типа электродов: деятельный (дифферентный) электрод и неактивный (индифферентный) электрод. Неактивный электрод имеет заряд ближний к нулю (можно сказать, что это электрическая «масса», по аналогии с автомобильным аккумулятором) и присоединяется к отрицательному полюсу гальванометра. Деятельный электрод присоединяется к положительному полюсу гальванометра и показывает потенциал той точки электрического поля, в которой он находится. Если деятельный электрод находится в области положительного поля, то гальванометр регистрирует подъем искривленный от изолинии (положительный зубец); если в области отрицательного поля — записывается снижение искривленный (отрицательный зубец).

Следует знать, что гальванометр регистрирует разность потенциалов. Т.е., прибор будет фиксировать изменение искривленный, если на оба электрода подан равный по знаку заряд, но разный по величине.

Tenox (Тенокс, Амлодипин) — давление в норме » Кардиология

Электрокардиография I Электрокардиографи́я

Электрокардиография - метод электрофизиологического исследования деятельности сердца в норме и патологии, основанный на регистрации и анализе электрической активности миокарда, распространяющейся по сердцу в течение сердечного цикла. Регистрация производится с помощью специальных приборов - электрокардиографов. Записываемая кривая - () - отражает динамику в течение сердечного цикла разности потенциалов в двух точках электрического поля сердца, соответствующих местам на теле обследуемого двух электродов, один из которых является положительным полюсом, другой - отрицательным (соединены соответственно с полюсами + и - электрокардиографа). Определенное взаимное расположение этих электродов называют электрокардиографическим отведением, а условную прямую линию между ними - осью данного отведения. На обычной величина электродвижущей силы (ЭДС) сердца и ее направление, меняющиеся в течение сердечного цикла, отражаются в виде динамики проекции вектора ЭДС на ось отведения, т.е. на линию, а не на плоскость, как это происходит при записи векторкардиограммы (см. Векторкардиография), отражающей пространственную динамику направления ЭДС сердца в проекции на плоскость. Поэтому ЭКГ, в противопоставление векторкардиограмме, иногда называют скалярной. Чтобы с ее помощью получить пространственное об изменениях электрических процессов в , необходимо ЭКГ снимать при различном положении электродов, т.е. в разных отведениях, оси которых не являются параллельными.

Теоретические основы электрокардиографии строятся на законах электродинамики, приложимых к электрическим процессам, происходящим в в связи с ритмичной генерацией электрического импульса водителем ритма сердца и распространением электрического возбуждения по проводящей системе сердца (Сердце) и миокарду. После генерации импульса в синусном узле распространяется вначале на правое, а через 0,02 с и на левое предсердие, затем после недлительной задержки в атриовентрикулярном узле переходит на перегородку и синхронно охватывает правый и левый желудочки сердца, вызывая их . Каждая возбужденная становится элементарным диполем (двухполюсным генератором): сумма элементарных диполей в данный момент возбуждения составляет так называемый эквивалентный диполь. Распространение возбуждения по сердцу сопровождается возникновением в окружающем его объемном проводнике (теле) электрического поля. Изменение за разности потенциалов в 2 точках этого поля воспринимается электродами электрокардиографа и регистрируется в виде зубцов ЭКГ, направленных изоэлектрической линии вверх (положительные ) или вниз (отрицательные ) в зависимости направления ЭДС между полюсами электродов. При этом амплитуда зубцов, измеряемая в милливольтах или в миллиметрах (обычно запись производится в режиме, когда стандартный калибровочный потенциал lmv отклоняет перо регистратора на 10 мм ), отражает величину разности потенциалов по оси отведения ЭКГ.

Основоположник Э. голландский физиолог Эйнтховен (W. Einthoven) предложил регистрировать разность потенциалов во фронтальной плоскости тела в трех стандартных отведениях - как бы с вершин равностороннего треугольника, за которые он принял правую руку, левую руку и лонное (в практической Э. в качестве третьей вершины используется левая ). Линии между этими вершинами, т.е. стороны треугольника, являются осями стандартных отведений.

Нормальная электрокардиограмма отражает процесс распространения возбуждения по проводящей системе сердца (рис. 3 ) и сократительному миокарду после генерации импульса в синусно-предсердном узле, который в норме является водителем ритма сердца. На ЭКГ (рис. 4, 5 ) в период диастолы (между зубцами Т и Р) регистрируется прямая горизонтальная , называемая изоэлектрической (изолинией). импульса в синусно-предсердном узле распространяется по миокарду предсердий, что формирует на ЭКГ предсердный зубец Р, и одновременно по межузловым путям быстрой проведения к предсердно-желудочковому узлу. Благодаря этому попадает в предсердно-желудочковый еще до окончания возбуждения предсердий. По предсердно-желудочковому узлу идет медленно, поэтому после зубца Р до начала зубцов, отражающих возбуждение желудочков, на ЭКГ регистрируется изоэлектрическая ; за это время завершается механическая предсердий. Затем импульс быстро проводится по предсердно-желудочковому пучку (пучку Гиса), его стволу и ножкам (ветвям), разветвления которых через волокна Пуркинье передают возбуждение непосредственно волокнам сократительного миокарда желудочков. () миокарда желудочков отражается на ЭКГ появлением зубцов Q, R, S (комплекса QRS), а в ранней фазе - сегментом RST (точнее, сегментом SТ либо RT, если зубец S отсутствует), почти совпадающим с изолинией, а в основной (быстрой) фазе - зубцом Т. Часто за зубцом Т следует небольшая волна U, происхождение которой связывают с реполяризацией в системе Гиса - Пуркинье. Первые 0,01-0,03 с комплекса QRS приходятся на возбуждение межжелудочковой перегородки, которое в стандартных и левых грудных отведениях отражается зубцом Q, а в правых грудных отведениях - началом зубца R. Продолжительность зубца Q в норме не более 0,03 с . В следующие 0,015-0,07 с возбуждается верхушек правого и левого желудочков от субэндокардиальных к субэпикардиальным слоям, их передняя, задняя и боковая стенки, в последнюю очередь (0,06-0,09 с ) возбуждение распространяется на основания правого и левого желудочков. Интегральный вектор сердца в период между 0,04 и 0,07 с комплекса ориентирован влево - к положительному полюсу отведений II и V 4 , V 5 , а в период 0,08-0,09 с - вверх и слегка вправо. Поэтому в указанных отведениях комплекс QRS представлен высоким зубцом R при неглубоких зубцах Q и S, а в правых грудных отведениях формируется глубокий зубец S. Соотношение величин зубцов R и S в каждом из стандартных и однополюсных отведении определяется пространственным положением интегрального вектора сердца электрической оси сердца), что в норме зависят от расположения сердца в грудной клетке.

Таким образом, на ЭКГ в норме выявляются предсердный зубец Р и QRST, состоящий из отрицательных зубцов Q, S, положительного зубца R, а также зубца Т, положительного во всех отведениях, кроме VR, в котором он отрицателен, и V 1 -V 2 , где зубец Т может быть как положительным, так и отрицательным или мало выраженным. Предсердный зубец Р в отведении aVR в норме также всегда отрицательный, а в отведении V 1 он обычно представлен двумя фазами: положительной - большей (возбуждение преимущественно правого предсердия), затем отрицательной - меньшей (возбуждение левого предсердия). В комплексе QRS могут отсутствовать зубцы Q или (и) S (формы RS, QR, R), а также регистрироваться два зубца R или S, при этом второй зубец обозначается R 1 (формы RSR 1 и RR 1) или S 1 .

Временные промежутки между одноименными зубцами соседних циклов называют межцикловыми интервалами (например, интервалы Р-Р, R-R), а между разными зубцами одного цикла - внутрицикловыми интервалами (например, интервалы P-Q, О-Т). Отрезки ЭКГ между зубцами обозначают как сегменты, если описывается не их продолжительность, а по отношению к изолинии или конфигурация (например, ST, или RT, отрезок протяженностью от окончания комплекса QRS до окончания зубца Т). В патологических условиях они могут смещаться вверх (элевация) или вниз () по отношению к изолинии (например, сегмента ST вверх при инфаркте миокарда, перикардите).

Синусовый ритм определяется по наличию в отведениях I, II, aVF, V 6 положительного зубца Р, который в норме всегда предшествует комплексу QRS и отстоит от него (интервал Р-Q или Р-R, если отсутствует зубец Q) не менее чем на 0,12 с . При патологической локализации предсердного водителя ритма близко к атриовентрикулярному соединению или в нем самом зубец Р в этих отведениях бывает отрицательным, сближается с комплексом QRS, может совпадать с ним по времени и даже выявляться после него.

Регулярность ритма определяется равенством межцикловых интервалов (Р-Р или R- R). При синусовой аритмии интервалы Р-Р (R-R) различаются на 0,10 с и более. Нормальная продолжительность возбуждения предсердий, измеряемая по ширине зубца Р, равна 0,08-0,10 с . Интервал Р-Q в норме составляет 0,12-0,20 с . Время распространения возбуждения по желудочкам, определяемое по ширине комплекса QRS, - 0,06-0,10 с . Продолжительность электрической систолы желудочков, т.е. интервал Q-Т, измеряемый от начала комплекса QRS до окончания зубца Т, в норме имеет должную величину, зависимую от частоты сердечных сокращений (должная продолжительность Q-Т), т.е. от длительности сердечного цикла (С), соответствующей интервалу R-R. По формуле Базетта должная продолжительность Q-Т равна k , где k - коэффициент, составляющий 0,37 для мужчин и 0,39 для женщин и детей. Увеличение или уменьшение интервала Q-Т в сравнении с должной величиной более чем на 10% - признак патологии.

Амплитуда (вольтаж) зубцов нормальной ЭКГ в разных отведениях зависит от особенностей телосложения обследуемого, выраженности подкожной клетчатки, положения сердца в грудной клетке. У взрослых нормальный зубец Р обычно наиболее высок (до 2-2,5 мм ) во II отведении; он имеет полуовальную форму. PIII и PaVL - положительные низкие (редко неглубокие отрицательные). при нормальном расположении электрической оси сердца представлен в отведениях I, II, III, aVL, aVF, V 4 -V 6 неглубоким (менее 3 мм ) начальным зубцом Q, высоким зубцом R и маленьким конечным зубцом S. Наиболее высок зубец R в отведениях II, V 4 , V 5 , причем в отведении V 4 амплитуда зубца R обычно больше, чем в отведении V 6 , но не превышает 25 мм (2,5 mV ). В отведении aVR основной зубец комплекса QRS (зубец S) и зубец Т - отрицательные. В отведении V, регистрируется комплекс rS (строчной буквой обозначают зубцы относительно малой амплитуды, когда необходимо специально подчеркнуть соотношение амплитуд), в отведениях V 2 и V 3 - комплекс RS или rS. Зубец R в грудных отведениях увеличивается справа налево (от V, к V 4 -V 5) и далее несколько уменьшается к V 6 . Зубец S уменьшается справа налево (от V 2 к V 6). Равенство зубцов R и S в одном отведении определяет переходную зону - отведение в плоскости, перпендикулярной пространственному вектору комплекса QRS. В норме переходная зона комплекса находится между отведениями V 2 и V 4 . Направление зубца Т обычно совпадает с направлением наибольшего по амплитуде зубца комплекса QRS. Он положительный, как правило, в отведениях I, II, Ill, aVL, aVF, V 2 -V 6 и имеет большую амплитуду в тех отведениях, где выше зубец R; причем зубец Т в 2-4 раза меньше (за исключением отведений V 2 -V 3 , где зубец Т может быть равным или выше R).

Сегмент ST (RT) во всех отведениях от конечностей и в левых грудных отведениях регистрируется на уровне изоэлектрической линии. Небольшие горизонтальные смещения (вниз до 0,5 мм или вверх до 1 мм ) сегмента ST возможны у здоровых людей, особенно на фоне тахикардии или брадикардии, но во всех таких случаях необходимо исключать характер подобных смещений путем динамического наблюдения, проведения функциональных проб или сопоставления с клиническими данными. В отведениях V 1 , V 2 , V 3 сегмент RST расположен на изоэлектрической линии или смещен вверх на 1-2 мм .

Варианты нормальной ЭКГ, зависимые от расположения сердца в грудной клетке, определяют по соотношению зубцов R и S или форме комплекса QRS в разных отведениях; таким же образом выделяют патологические отклонения электрической оси сердца при гипертрофии желудочков сердца, блокадах ветвей пучка Гиса и т.д. Эти варианты рассматривают условно как повороты сердца вокруг трех осей: переднезадней (положение электрической оси сердца определяется как нормальное, горизонтальное, вертикальное или как отклонение ее влево, вправо), продольной (поворот по ходу и против хода часовой стрелки) и поперечной (поворот сердца верхушкой вперед или назад).

Положение электрической оси определяется по величине угла α, построенного в системе координат и осей отведении от конечностей (см. рис. 1, а и б ) и вычисленного по алгебраической сумме амплитуд зубцов комплекса QRS в каждом из любых двух отведений от конечностей (обычно в I и III): нормальное положение - α от + 30 до 60°: горизонтальное - α от 0 до +29°; вертикальное α от +70 до +90°. отклонение влево - α от -1 до -90°; вправо - α от +91 до ±80°. При горизонтальном положении электрической оси сердца интегральный вектор параллелен оси Т отведения; зубец R I высокий (выше, чем зубец R II); R III SVF. При отклонении электрической оси влево R I > R II > R aVF

При повороте сердца вокруг продольной оси по часовой стрелке на ЭКГ имеет форму RS в отведениях I, V 5,6 и форму qR в отведении III. При повороте против часовой стрелки желудочковый комплекс имеет форму qR в отведениях I, V 5,6 и форму RS в отведении III и умеренно увеличенный R в отведениях V 1 -V 2 без смещения переходной зоны (в отведении V 2 R

У детей нормальная ЭКГ имеет ряд особенностей, основными из которых являются: отклонение электрической оси сердца вправо (α составляет у новорожденных +90 - +180°, у детей в возрасте 2-7 лет - +40° - +100°); наличие в отведениях II, Ill, aVF глубокого зубца Q, амплитуда которого уменьшается с возрастом и становится близкой к таковой у взрослых к 10-12 годам; низкий вольтаж зубца Т во всех отведениях и наличие отрицательного зубца Т в отведениях III, V 1 -V 2 (иногда и V 3 , V 4), меньшая продолжительность зубцов Р и комплекса QRS - в среднем по 0,05 с у новорожденных и по 0,07 с у детей от 2 до 7 лет; более короткий интервал Р-Q (в среднем 0,11 с у новорожденных и 0,13 с у детей от 2 до 7 лет). К 15 годам перечисленные особенности ЭКГ в значительной мере утрачиваются, продолжительность зубца Р и комплекса QRS составляет в среднем по 0,08 с , интервала Р-Q - 11,14 с .

Электрокардиографическая изменений состояния и деятельности сердца основывается на анализе величины, формы, направленности в разных отведениях и повторяемости в каждом цикле всех зубцов ЭКГ, данных измерения продолжительности зубцов Р, Q, комплекса QRS и интервалов Р-Q (Р-R), Q-Т, R-R, а также отклонения от изолинии сегмента RST с последующей интерпретацией выявленных особенностей как патологических либо как варианта нормы. В протокольной части заключения по ЭКГ обязательно характеризуются сердечный ритм (синусовый, эктопический, и др.) и положение электрической оси сердца. Заключение содержит характеристику конкретного патологического ЭКГ синдрома. При ряде форм патологии сердца совокупность изменений ЭКГ имеет определенную специфичность, в связи с чем Э. является одним из ведущих диагностических методов в кардиологии.

Декстрокардия вследствие зеркального относительно сагиттальной плоскости изменения топографии сердца и смещения его вправо обусловливает ориентацию основных векторов возбуждения предсердий и желудочков сердца вправо, т.е. к отрицательному полюсу I отведения и к положительному полюсу III отведения. Поэтому на ЭКГ в I отведении регистрируются глубокий зубец S и отрицательные зубцы Р и Т; зубец R III высокий, зубцы P III и T III положительные; в грудных отведениях уменьшен вольтаж QRS в левых позициях с нарастанием глубины зубца S к отведениям V 5 -V 6 . Если поменять местами электроды правой и левой руки, то на ЭКГ в I и III отведениях регистрируются зубцы обычной формы и направления. Такая замена электродов и регистрация дополнительных грудных отведений V 3R , V 4R , V 5R , V 6R позволяют подтвердить заключение и выявить или исключить другую патологию миокарда при декстрокардии.

При декстроверсии в отличие от декстрокардии зубец Р в отведениях I, II, V 6 положительный. начальная часть желудочкового комплекса имеет форму qRS в отведениях I и V 6 и форму RS в отведении V 3R .

Гипертрофия предсердий и желудочков сердца сопровождается увеличением ЭДС гипертрофированного отдела и отклонением в его сторону вектора суммарной ЭДС сердца. На ЭКГ это отражается в определенных отведениях увеличением и (или) изменением формы зубцов Р при гипертрофии предсердий и зубцов R и S при гипертрофии желудочков. Могут отмечаться небольшое уширение соответствующего зубца и увеличение так называемого внутреннего отклонения, т.е. времени от начала зубца Р или желудочкового комплекса до момента, соответствующего максимуму их положительного отклонения (вершине зубца Р или R). При гипертрофии желудочков может измениться конечная часть желудочкового комплекса: смещается вниз RST и становится ниже или инвертируется (становится отрицательным) зубец Т в отведениях с высоким R, что обозначают как (разнонаправленность) сегмента ST и зубца Т по отношению к зубцу R. Наблюдается также сегмента RST и зубца Т по отношению к зубцу S в отведениях с глубоким зубцом S.

При гипертрофии левого предсердия (рис. 7 ) зубец Р расширяется до 0,11-0,14 с , становится двугорбым (Р mitrale) в отведениях I, II, aVL и левых грудных, нередко с увеличением амплитуды второй вершины (в некоторых случаях зубец Р уплощен). Время внутреннего отклонения зубца Р в отведениях I, II, V 6 более 0,06 с . Наиболее частым и достоверным признаком гипертрофии левого предсердия служит увеличение отрицательной фазы зубца Р в отведении V 1 , которая по амплитуде становится больше положительной фазы.

Гипертрофия правого предсердия (рис. 8 ) характеризуется увеличением амплитуды зубца Р (более 1,8-2,5 мм ) в отведениях II, Ill, aVF, его остроконечной формой (Р pulmonale). Электрическая ось зубца Р приобретает вертикальное положение, реже отклонена вправо. Значительное увеличение амплитуды зубца Р в отведениях V 1 -V 3 наблюдается при врожденных пороках сердца (Р congenitale).


Подробности

В сердце происходят электрические и механические процессы.
Электрические процессы : автоматия, возбуждение, проведение. Изучаются с помощью ЭКГ.
Механические процессы : сокращение, расслабление. Изучаются с помощью многочисленных методов измерения давления и объема крови в полостях сердца.

ЭЛЕКТРОКАРДИОГРАФИЯ.

ЭКГ – запись биопотенциалов (которые возникают в сердце во время распространения возбуждения) с помощью электродов, расположенных на поверхности тела . ЭКГ помогает определить место возикновения импульса (водитель ритма) и характер распространения возбуждения по миокарду предсердий и желудочков.

ГЕНЕЗ ЗУБЦОВ :(См. схему ЭКГ):

  • зубец Р отражает процесс деполяризации предсердий;
  • сегмент PQ (изоэлектрическая линия) отражает время проведения через АВ-узел (атриовентрикулярная задержка);
  • комплекс зубцов QRS отражает процесс деполяризации желудочков;
  • сегмент ST (изоэлектрическая линия) – полное возбуждение всех кардиомиоцитов желудочков (совпадает с фазой «плато» потенциала действия);
  • зубец Т отражает процесс реполяризации желудочков.

ДИПОЛЬНАЯ КОНЦЕПЦИЯ.

Поверхность возбужденного участка миокарда заряжена отрицательно, поверхность невозбужденного участка миокарда заряжена положительно. На границе раздела возбужденных и невозбужденных участков миокарда формируется множество диполей.

Диполь – это совокупность двух точечных электрических заряда (равных по величине и противоположных по знаку), расположенных на исчезающе малом расстоянии друг от друга. Вектор диполя имеет направление от (-) к (+).

Векторы диполей можно суммировать:

(1) если векторы направлены в одну и ту же сторону, к первому вектору добавляют второй;

(2) если векторы направлены в противоположные стороны, из большего вектора вычитают меньший;

(3) если векторы направлены под углом друг к другу, их складывают по правилу «параллелограмма».

В результате сложения векторов всех диполей получают суммарный моментный вектор (вектор ЭДС сердца). Проекция суммарного моментного вектора на ось отведения соответствует определенному зубцу на кривой ЭКГ.

Отведение ЭКГ – это расположение двух электродов на поверхности тела (в определенных точках). Линия, соединяющая два электрода, называется осью отведения . Ось отведения имеет определенную полярность: один из электродов «отрицательный» (-), т.е. сигнал от него подается на отрицательный «вход» электрокардиографа, другой электрод -«положительный» (+), т.е. сигнал от него подается на положительный «вход» электрокардиографа.

При обследовании больных регстрируют как минимум 12 отведений : 3 стандартных отведения от конечностей (I, II и III); 3 усиленных отведения от конечностей (AVR, AVL, AVF) и 6 грудных отведений (V1 – V6).

Стандартные отведения от конечностей.

Биполярные (двухполюсные) – оба электрода активные. Оси этих отведений представляют собой стороны треугольника Эйнтховена:
1 станд.отв.: правая рука (-) и левая рука (+)
II станд.отв.: правая рука (-) и левая нога (+)
III станд.отв.: левая рука (-) и левая нога (+)

Усиленные отведения от конечностей.

Униполярные (однополюсные) – один электрод активный другой – пассивный (индифферентный, электрод сравнения, нулевой).

AVR : активный электрод на правой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVL : активный электрод на левой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVF : активный электрод на левой ноге (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

Оси всех отведений от конечностей расположены во фронтальной плоскости. Для анализа ЭКГ их можно объединить в общую шестиосевую систему координат.

Грудные отведения : униполярные (однополюсные) – один электрод активный, расположен в определенной точке на поверхности грудной клетки (+); другой –электрод сравнения (нулевой) получен путем соединения всех трех электродов конечностей. Сигнал от него через дополнгительное сопротивление подается на отрицательный «вход» электрокардиографа.
Оси грудных отведений расположены в горизонтальной плоскости.

Векторы ЭДС сердца .

  • Вектор Р – предсердный вектор – нарвлен сверху вниз, справа налево. Вектор Q – 1-ый вектор деполяризации желудочков – направлен снизу вверх, слева направо (0.02 сек от начала деполяризации желудочков; возбуждение нижней части межжелудочковой перегородки).
  • Вектор R – 2-ой вектор деполяризации желудочков – направлен сверху вниз, справа налево (0.04 сек от начала деполяризации желудочков; возбуждение распространяется от верхушки сердца к основанию желудочков, причем от эндокарда к эпикарду).
  • Вектор S – 3-ий вектор деполяризации желудочков – направлен снизу вверх, слева направо, (0.06 сек от начала деполяризации желудочков; возбуждение основания левого желудочка).

Вектор Т – направлен сверху вниз, справа налево (реполяризация, происходит во всех отделах желудочков, причем от эпикарда к эндокарду).

Проекция суммарного моментного вектора (P,Q,R,S,T) на ось отведения соответствует определенному зубцу на кривой ЭКГ. Если проекция вектора направлена к (+) полюсу оси отведения, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный зубец). Если проекция вектора направлена к (-) полюсу оси отведения, зубец ЭКГ направлен вниз от изоэлектрической линии (отрицательный зубец). Амплитуда зубца пропорциональна длине проекции вектора на оси отведения. Если вектор проходит параллельно оси отведения – его проекция на ось данного отведения (а значит и амплитуда зубца в данном отведении) максимальна. Если вектор проходит перпендикулярно к оси отведения – его проекция на ось данного отведения равна нулю (значит зубец в данном отведении отсутствует).

Электрическая ось сердца.

Это проекция среднего результирующего вектора деполяризации желудочков на фронтальную плоскость. Средний результирующий вектор деполяризации желудочков получен путем суммации трех моментных векторов – Q, R и S. Направление электрической и анатомической осей сердца у взрослого здорового человека совпадают. У астеников это направление более вертикальное (правограмма), у гиперстеников – более горизонтальное (левограмма).

Среди многочисленных инструментальных методов исследования, которыми в совершенстве должен владеть современный практический врач, ведущее место справедливо принадлежит электрокардиографии. Этот метод исследования биоэлектрической активности сердца является сегодня незаменимым в диагностике нарушений ритма и проводимости, гипертрофий желудочков и предсердий, ишемической болезни сердца, инфаркта миокарда и других заболеваний сердца.

Что такое электрокардиография?

Электрокардиографией называется метод графической регистрации электрических явлений, возникающих в работающем сердце. Распространение возбуждения по сердцу сопровождается возникновением в окружающем его объемном проводнике (теле) электрического поля. Форма, амплитуда и знак элементов электрокардиограммы зависят от пространственно-временных характеристик возбуждения сердца (хронотопографии возбуждения), от геометрических характеристик и пассивных электрических свойств тела как объемного проводника, от свойств отведений электрокардиограммы как измерительной системы.

Каждое мышечное волокно представляет собой элементарную систему - диполь.
Из бесчисленных микродиполей одиночных волокон миокарда складывается суммарный диполь (ЭДС), который при распространении возбуждения в головной части имеет положительный заряд, в хвостовой - отрицательный.

При угасании возбуждения эти соотношения становятся противоположными. Так как возбуждение начинается с основания сердца, эта область является отрицательным полюсом, область верхушки - положительным.

Электродвижущая сила (ЭДС) имеет определенную величину и направление, т.е. является векторной величиной. Направление ЭДС принято называть электрической осью сердца, чаще всего она располагается параллельно анатомической оси сердца. Перпендикулярно к электрической оси проходит линия нулевого потенциала.

С помощью электрокардиографов биотоки сердца можно зарегистрировать в виде кривой - электрокардиограммы (ЭКГ).

Развитие электрокардиографии связано с именем голландского ученого Эйнтховена, который впервые зарегистрировал биотоки сердца в 1903 г.
с помощью струнного гальванометра и разработал ряд теоретических и практических основ электрокардиографии.

Основные функции сердца:

Сердце обладает рядом функций, определяющих особенности его работы:
1) функция автоматизма. Заключается в способности сердца вырабатывать электрические импульсы при отсутствии всяких внешних раздражений.

Функцией автоматизма обладают клетки синоатриального узла (СА-узла) и проводящей системы сердца: атриовентрикулярного соединения (АВ-соединения), проводящей системы предсердий и желудочков. Они получили название клеток водителей ритма - пейсмекеров.

Сократительный миокард лишен функции автоматизма.

СА-узел является центром автоматизма первого порядка. В норме это единственный водитель ритма, который подавляет автоматическую активность остальных (эктопических) водителей ритма сердца.

На функцию СА-узла и других водителей ритма большое влияние оказывают симпатическая и парасимпатическая нервная система: активация симпатической системы ведет к увеличению автоматизма клеток СА-узла и проводящей системы, а парасимпатической системы - к уменьшению.
СА-узел вырабатывает электрические импульсы с частотой 60-80 в минуту.

Центры автоматизма второго порядка - некоторые участки в предсердиях и АВ-соединение - зона перехода атриовентрикулярного узла в пучок Гиса. Частота продуцируемых электрических импульсов - 40-60 в минуту.

Центры автоматизма третьего порядка, обладающие самой низкой способностью к автоматизму (25-45 импульсов в минуту), - нижняя часть пучка Гиса, его ветви и волокна Пуркинье. Центры автоматизма второго и третьего порядка являются только потенциальными, или латентными, водителями ритма, они берут на себя функцию водителя ритма при поражениях СА-узла;

2) функция проводимости. Это способность к проведению возбуждения, возникшего в каком-либо участке сердца, к другим отделам сердечной мышцы. Волна возбуждения, генерированного в клетках СА-узла, распространяется по внутрипредсердным проводящим путям - сверху вниз и немного влево, в начале возбуждается правое, затем правое и левое предсердие, в конце - только левое предсердие.

В аv-узле происходит физиологическая задержка волны возбуждения, определяющая нормальную временную последовательность возбуждения предсердия и желудочков.
От аv-узла волна возбуждения передается на хорошо развитую внутрижелудочковую проводящую систему, состоящую из предсердно-желудочкового пучка (пучка Гиса), основных ветвей (ножек) пучка Гиса и волокон Пуркинье;

3) функция возбудимости и рефрактерность волокон миокарда.

Возбудимость - это способность сердца возбуждаться под влиянием импульсов. Функцией возбудимости обладают клетки как проводящей системы, так и сократительного миокарда.

Возникновение возбуждения в мышечном волокне является результатом изменения физико-химических свойств мембраны клетки и ионного состава внутриклеточной и внеклеточной жидкости. В рефрактерный период клетки миокарда не возбудимы на электрический стимул (систола). Во время диастолы полностью восстанавливается возбудимость миокардиального волокна, а рефрактерность его отсутствует;

4) функция сократимости.

Сократимость - это способность сердечной мышцы сокращаться в ответ на возбуждение. Этой функцией в основном обладает сократительный миокард. В результате последовательного сокращения различных отделов сердца и осуществляется основная, насосная, функция сердца.

Принцип работы электрокардиографа:

Колебания разности потенциалов, возникающие при возбуждении сердечной мышцы, воспринимается электродами, расположенными на теле обследуемого, и подается на вход электрокардиографа. Это чрезвычайно малое напряжение проходит через систему катодных ламп, благодаря чему его величина возрастает в 600-700 раз. Поскольку величина и направление ЭДС в течение сердечного цикла все время изменяются, стрелка гальванометра отражает колебания напряжения, а ее колебания в свою очередь регистрируются в виде кривой на движущейся ленте.

Запись колебаний гальванометра осуществляется на движущейся ленте непосредственно в момент регистрации. Движение ленты для регистрации ЭКГ может происходить с различной скоростью (от 25 до 100 мм/с), но чаще всего она равна 50 мм/с. Зная скорость движения ленты, можно рассчитать продолжительность элементов ЭКГ.

Так, если ЭКГ зарегистрирована при обычной скорости 50 мм/с, 1 мм кривой будет соответствовать 0,02 с.

Для удобства расчета в аппаратах с непосредственной записью ЭКГ регистрируется на бумаге с миллиметровыми делениями. Чувствительность гальванометра подбирается таким образом, чтобы напряжение в 1 мВ вызывало отклонение регистрирующего устройства на 1 см. Проверка чувствительности или степени усиления аппарата проводится перед регистрацией ЭКГ, она осуществляется с помощью стандартного напряжения в 1 мВ (контрольный милливольт), подача которого на гальванометр должна вызывать отклонение луча или пера на 1 см. Нормальная кривая милливольта напоминает букву “П”, высота ее вертикальных линий равна 1 см.

Электрокардиографические отведения:

Изменение разности потенциалов на поверхности тела, возникающие во время работы сердца, записываются с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов, существующих между двумя разными точками электрического поля сердца, в которых установлены электроды.

Таким образом, различные ЭКГ-отведения различаются между собой прежде всего участками тела, от которых отводятся потенциалы.

В настоящее время в клинической практике наиболее широко используют 12 отведений ЭКГ, запись которых является обязательной при каждом электрокардиографическом обследовании больного: 3 стандартных отведения, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений.

Стандартные отведения:

Стандартные двухполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удаленными от сердца и расположенными во фронтальной плоскости тела, на конечностях.

Для записи этих отведений электроды накладывают на правую руку (красная маркировка), на левую руку (желтая маркировка) и на левую ногу (зеленая маркировка). Эти электроды попарно подключают к электрокардиографу для регистрации каждого из трех стандартных отведений. Четвертый электрод устанавливают на правую ногу для подключения заземляющего провода (черная маркировка). Стандартные отведения от конечностей регистрируют при следующем попарном подключении электродов.

I отведение - правая рука (–) и левая рука (+).
II отведение - правая рука (–) и левая нога (+).
III отведение - левая нога (+) и левая рука (–).

Три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена), вершинами которого являются правая рука, левая рука и левая нога с установленными там электродами. В центре треугольника расположен электрический центр сердца, одинаково удаленный от всех трех отведений.

Гипотетическая линия, соединяющая два электрода, участвующих в образовании ЭКГ-отведения, называется осью отведения.

Если ЭДС сердца в какой-либо момент сердечного цикла проецируется на положительную часть оси отведения, на ЭКГ записывается положительное отклонение (положительные зубцы R, T, P). Если ЭДС сердца проецируется на отрицательную часть оси отведения, на ЭКГ регистрируются отрицательные отклонения (зубцы Q, S, иногда отрицательные зубцы T или P).

Для облегчения анализа показаний ЭКГ, зарегистрированных в стандартных отведениях, принято несколько смещать оси этих отведений и проводить их через электрический центр сердца. Получается удобная для анализа триосевая система координат.

Усиленные однополюсные отведения от конечностей. Эти отведения были предложены Гольдбергером в 1942 г.

AVR - усиленное однополюсное отведение от правой руки.
AVL - усиленное однополюсное отведение от левой руки.
AVF - усиленное однополюсное отведение от левой ноги.

Шести осевая система координат:

Стандартные и усиленные однополюсные отведения от конечностей дают возможность зарегистрировать изменения ЭДС сердца во фронтальной плоскости, т.е. в плоскости, в которой расположен треугольник Эйнтховена.

Шестиосевая система координат (Бейли) получается при совмещении осей трех стандартных и трех усиленных отведений от конечностей, проведенных через электрический центр сердца. Благодаря ей можно достаточно точно определять величину и направление вектора ЭДС сердца во фронтальной плоскости.

Грудные отведения:

С целью более точной диагностики поражений миокарда регистрируется ЭКГ при расположении электрода на передней поверхности грудной клетки.

Отведение V1 - активный электрод установлен в IV межреберье по правому краю грудины.
Отведение V2 - активный электрод расположен в IV межреберье по левому краю грудины.
Отведение V3 - активный электрод находится между второй и четвертой позицией, примерно на уровне IV ребра по левой парастернальной линии.
Отведение V4 - активный электрод установлен в V межреберье по левой срединно-ключичной линии.
Отведение V5 - активный электрод расположен на том же горизонтальном уровне, что и V4, на левой передней подмышечной линии.
Отведение V6 - активный электрод находится на левой средней подмышечной линии на том же горизонтальном уровне, что и электроды отведений V4 и V5.

В отличие от стандартных и усиленных отведений от конечностей грудные отведения регистрируют изменения ЭДС сердца преимущественно в горизонтальной плоскости.

Электрокардиографические отклонения в каждом из 12 отведений отражают суммарную ЭДС всего сердца, т.е. являются результатом одновременного воздействия на данное отведение изменяющегося электрического потенциала в левом и правом отделах сердца, в передней и задней стенках желудочков, в верхушке и основании сердца.

Дополнительные отведения:

Диагностические возможности ЭКГ-исследования могут быть расширены при применении некоторых дополнительных отведений. Их использование особенно целесообразно в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет достаточно надежно диагностировать ту или иную электрокардиографическую патологию или требует уточнения некоторых количественных параметров выявленных изменений.

Методика регистрации дополнительных отведений отличается локализацией активного электрода на поверхности грудной клетки.

Активный электрод устанавливают по задней подмышечной (V7), лопаточной (V8) и паравертебральной (V9) линиям на уровне горизонтали, на которой расположены электроды V4-V6. Эти отведения обычно используют для более точной диагностики очаговых изменений миокарда в заднебазальных отделах левого желудочка.

Отведения по Нэбу. Двухпомостные грудные отведения, предложенные в 1938 г. Нэбом, фиксируют разность потенциалов между двумя точками, расположенными на поверхности грудной клетки. Отведения по Нэбу записывают при положениях рукоятки переключателя на стандартных отведениях, электроды которых помещают на грудную клетку: электрод для правой руки - II межреберье у правого края грудины, электрод для левой руки - в точку, находящуюся на уровне верхушечного толчка по левой задней подмышечной линии, для левой ноги - на область верхушечного толчка.

Регистрируют три отведения: Д (dorsalis) в положении переключателя на I отведении, А (anterior) - на II отведении, Y (inferior) - на III отведении.

Отведения по Нэбу находят применение для диагностики очаговых изменений миокарда задней стенки (отведение Д), переднебоковой стенки (отведение А) и верхних отделов передней стенки (отведение Y).

Отведения Нэба часто применяют при проведении велоэргометрической и других функциональных электрокардиографических проб с физической нагрузкой.

Отведение по Лиану, или S5, применяют для уточнения диагноза сложных аритмий, его регистрируют при положении рукоятки переключателя на I отведении, электрод для правой руки располагают во II межреберье у правого края грудины, электрод для левой руки - у основания мечевидного отростка, справа или слева от него, в зависимости от того, при каком положении электрода лучше выявляется зубец Р.

Отведения по Слапаку-Партилле применяют для уточнения изменений в задней стенке при наличии глубокого зуба Q во II, III, AVF-отведениях.

Электроды помещают следующим образом: электрод от левой руки (желтый) располагают по левой задней аксиллярной линии на уровне верхушечного толчка (V межреберье), электрод от правой руки (красный) помещают поочередно во II межреберье в 4 точки: 1 - у левого края грудины; 2 - на середине расстояния между 1 и 3; 3 - на срединно-ключичной линии; 4 - по передней аксиллярной линии. ЭКГ регистрируют в переключении I отведения. Получают 4 отведения - S1, S2, S3, S4.

При нарастании зуба Q от S1 до S4 можно предположить наличие у больного рубцовых изменений в задней стенке или острого инфаркта миокарда (снимать ЭКГ в динамике).

Отведение по Клетэну. Уточняет изменения в нижней стенке левого желудочка. При этом электрод от правой руки помещают на рукоятку грудины, второй электрод остается на левой ноге. ЭКГ регистрируют в положении переключателя - II стандартное отведение.

Техника регистрации электрокардиограммы:

Для получения качественной записи ЭКГ необходимо строго придерживаться некоторых общих правил ее регистрации.

Условия проведения исследования. ЭКГ регистрируют в специальном помещении, удаленном от возможных источников электронных полей: электромоторов, физиотерапевтических и рентгеновских кабинетов, распределительных электрощитов.

Кушетка должна находиться на расстоянии не менее 1,5-2 м от проводов электросети. Целесообразно экранировать кушетку.

Исследование проводится после 10-15-минутного отдыха, не ранее чем через 2 ч после приема пищи. Больной должен быть раздет до пояса, голени также должны быть освобождены от одежды.

Запись ЭКГ проводится обычно в положении больного лежа на спине, что позволяет добиться максимального расслабления мышц.

Наложение электродов:

На внутреннюю поверхность голеней и предплечий в нижней их трети накладывают 4 электрода (пластинчатых), а на грудь устанавливают один или несколько (при многоканальной записи) грудных электродов, используя резиновую грушу-присоску.

Для улучшения качества записи следует обеспечить хороший контакт электродов с кожей.

Для этого необходимо:
1) обезжирить кожу спиртом в местах наложения электродов;
2) при значительной волосатости кожи смочить места наложения электродов мыльным раствором или побрить;
3) под электроды положить марлевые прокладки, смоченные 5-10%-ным раствором хлорида натрия, или покрыть электроды слоем специальной токопроводящей пасты или геля.

Подключение проводов к электродам:

К каждому электроду, установленному на конечностях или на грудной клетке, присоединяют провод, идущий от электрокардиографа и маркированный определенным цветом.

Маркировка входных проводов:
1) правая рука - красный цвет;
2) левая рука - желтый цвет;
3) левая нога - зеленый цвет;
4) правая нога (заземление пациента) - черный цвет;
5) грудной электрод - белый цвет.

При наличии 6-канального электрокардиографа, позволяющего одновременно зарегистрировать ЭКГ в 6 грудных отведениях, к электроду V1 подключают провод, имеющий красную окраску на наконечнике, к электроду V2 - желтую, V3 - зеленую, V4 - коричневую, V5 - черную, V6 - фиолетовую.

Запись электрокардиограммы:

В положении переключателя отведений “О” регистрируют калибровочный милливольт (1 mV = 10 мм).

При необходимости можно изменить усиление: уменьшить при слишком большой амплитуде зубцов ЭКГ (1 мВ = 5 мм) или увеличить при малой их амплитуде (1 мВ = 15 или 20 мм).

Запись ЭКГ осуществляют при спокойном дыхании. В каждом отведении записывают не менее 4 сердечных циклов PQRST. ЭКГ регистрируют, как правило, при скорости движения бумаги 50 мм/с. Меньшую скорость (25 мм/с) используют при необходимости более длительной записи ЭКГ, например для диагностики нарушений ритма.

На бумажной ленте записывают фамилию, отчество и имя пациента, его возраст, дату и время исследования. Лента с ЭКГ должна быть разрезана по отведениям и наклеена на бланк в той же последовательности, которая была рекомендована для съемки ЭКГ: I, II, III, AVR, AVL и AVF, V1-V6.

Функциональные пробы:

1) пробы с физической нагрузкой;
2) фармакологические пробы применяют для разграничения функциональных и органических изменений электрокардиограммы.

Проба с блокаторами b-адренорецепторов:

Проба с анаприлином (обзиданом) проводится с целью уточнения природы выявленных ранее электрокардиографических нарушений процесса реполяризации (сегмента ST и зубца Т) и проведения дифференциальной диагностики функциональных (нейроциркуляторная дистония, дисгормональная миокардиодистрофия) и органических (стенокардия, миокардит) и других заболеваний сердца.

Исследование проводят утром натощак. После регистрации исходной ЭКГ в 12 общепринятых отведениях больному дают внутрь 40-80 мг анаприлина (обзидана) и записывают повторно ЭКГ через 30, 60 и 90 мин после приема препарата.

При функциональных обратимых изменениях миокарда, сопровождающихся изменениями конечной части желудочкового комплекса (сегменты SТ и зубца Т), прием b-адреноблокаторов в большинстве случаев приводит к частичной или полной нормализации ЭКГ (положительная проба).

Электрокардиографические нарушения органической природы не претерпевают существенных изменений после приема препарата (отрицательная проба).

Под влиянием блокаторов b-адренорецепторов возможны небольшая брадикардия и увеличение продолжительности интервала РQ. Проведение пробы противопоказано больным с бронхиальной астмой и сердечной недостаточностью.

Проба с хлоридом калия:

Проба применяется с той же целью, что и проба с b-адреноблокаторами. После записи ЭКГ больному дают внутрь 6-8 г хлорида калия, разведенного в стакане воды. Повторно ЭКГ регистрируют через 30, 60 и 90 мин после приема калия. частичная или полная нормализация ранее измеренных сегмента S-Т и зубца Т после приема препарата (положительная проба) наступает, как правило, при функциональных изменениях миокарда. Отрицательная проба чаще свидетельствует об органических процессах в сердечной мышце. При проведении пробы могут иногда появиться тошнота и слабость.

Электрокардиографическая проба с нитроглицерином дает разнонаправленные изменения, которые весьма сложно интерпретировать. Все функциональные пробы проводят утром натощак или через 3 ч после завтрака. Окончательное решение о проведении пробы принимают в день ее проведения, после регистрации исходной ЭКГ.

Атропиновая проба:

После регистрации ЭКГ обследуемому вводят подкожно 1 мл 0,1%-ного раствора атропина и повторно исследуют ЭКГ через 5, 15 и 30 мин. Введение атропина блокирует действие блуждающего нерва и позволяет правильнее трактовать происхождение нарушений сердечного ритма и проводимости. Например, если на ЭКГ отмечалось удлинение интервала Р-Q, а после введения атропина продолжительность его нормализовалась, то имевшееся нарушение атриовентрикулярной проводимости было обусловлено повышением тонуса блуждающего нерва и не является следствием органического поражения миокарда.

Нормальная электрокардиограмма:

Любая ЭКГ состоит из нескольких зубцов, сегментов и интервалов, отражающих сложный процесс распространения волны возбуждения по сердцу.

В период диастолы сердца токи действия не возникают, и электрокардиограф регистрирует прямую линию, которая называется изоэлектрической. Появление токов действия сопровождается возникновением характерной кривой.

На ЭКГ здоровых людей различают следующие элементы:
1) положительные зубцы Р, R и Т, отрицательные Q и S; непостоянный положительный зубец U;
2) интервалы Р-Q, S-Т, Т-Р и R-R;
3) комплексы QRS и QRST.

Каждый из этих элементов отражает время и последовательность возбуждения различных участков миокарда.

В нормальных условиях сердечный цикл начинается возбуждением предсердий, что на ЭКГ отражается появлением зубца Р.

Восходящий отрезок Р обусловлен в основном возбуждением правого предсердия, нисходящий - левого предсердия. Величина этого зубца невелика, а в норме его амплитуда не превышает 1-2,5 мм; продолжительность составляет 0,08-1,0 с.

В норме в отведениях I, II, AVF, V2-V6 зубец Р всегда положительный.

В отведениях III, AVL, V1 зубец Р может быть положительным, двухфазным, а в отведениях III и AVL иногда даже отрицательным.

В отведении AVR зубец Р всегда отрицательный.

За зубцом Р следует отрезок прямой линии до зубца Q, а если он не выражен, то до зубца R. Это интервал P-Q (R). Он измеряется от начала зубца Р до начала зубца Q и соответствует времени от начала возбуждения предсердий до начала возбуждения желудочков. Нормальная продолжительность интервала Р-Q от 0,12 до 0,20 с и у здорового человека зависит в основном от частоты сердечных сокращений: чем выше частота сокращений сердца, тем короче интервал P-Q.

Желудочковый комплекс QRST отражает сложный процесс распространения (комплекс QAS) и угасания (сегмент RS-T и зубец Т) возбуждения по миокарду желудочков. Продолжительность QRS, измеряемая от начала зубца Q до конца зубца S, составляет 0,06-0,1 с.

Если амплитуда зубцов комплекса QRS достаточно велика и превышает 5 мм, их обозначают заглавными буквами латинского алфавита Q, R, S, если мала (менее 5 мм) - строчными буквами q, r, s.

Отрицательный зубец комплекса QRS, непосредственно предшествующий зубцу R, обозначают буквой Q (q), а отрицательный зубец, следующий сразу за зубцом R, - буквой S (s). Если на ЭКГ регистрируется только отрицательное отклонение, а зубец R отсутствует совсем, желудочковый комплекс обозначают QS.

Первый зубец комплекса - отрицательный зубец Q - соответствует возбуждению межжелудочковой перегородки.

В норме зубец Q может быть зарегистрирован во всех стандартных и усиленных отведениях от конечностей и в грудных отведениях V4-V6. Амплитуда нормального зубца Q во всех отведениях, кроме AVR, не превышает высоты зубца R, а его продолжительность - 0,03 с.

В отведении AVR у здорового человека может быть зафиксирован глубокий и широкий зубец Q или даже комплекс QS.

Зубец R соответствует почти полному охвату возбуждением обоих желудочков. Он является самым высоким зубцом желудочкового комплекса, его амплитуда колеблется в пределах 5-15 мм.

В норме зубец R может регистрироваться во всех стандартных и усиленных отведениях от конечностей. В отведении AVR зубец R нередко плохо выражен или отсутствует вообще. В грудных отведениях амплитуда зубца R постепенно увеличивается от V1 к V4, а затем несколько уменьшается в V5 и V6.

Зубец RV1, V2 отражает распространение возбуждения по межжелудочковой перегородке, а зубец RV4, V5, V6 - по мышце левого и правого желудочков. Интервал внутреннего отклонения в отведении V1 не превышает 0,03 с, а в отведении V6 - 0,05 с.

Зубец S записывается при полном охвате желудочков возбуждением.

Амплитуда зубца S колеблется в больших пределах, не превышая 20 мм. В грудных отведениях зубец S постепенно уменьшается от V1, V2 до V4, а в отведениях V5, V6 имеет малую амплитуду или отсутствует совсем.

Продолжительность желудочкового комплекса - 0,07-0,1 с.

В момент полной деполяризации миокарда разность потенциалов отсутствует, поэтому на ЭКГ записывается, как правило, прямая линия:
1) интервал S-T;
2) сегмент RS-T - отрезок от конца комплекса QRS до начала зубца Т;

Сегмент RS-T у здорового человека в отведениях от конечностей расположен на изолинии (+ 0,5 мм). В норме в грудных отведениях V1-V3 может наблюдаться небольшое смещение сегмента (не более 2 мм), а в отведениях V4, 5, 6 - вниз (не более 0,5 мм).

Зубец Т соответствует фазе восстановления (реполяризация) миокарда желудочков.

В норме зубец Т всегда положительный в отведениях I, II, AVF1, V2-V6, причем Т1 > ТIII, а ТV5 > TV1.

В отведениях III, AVL и V зубец Т может быть положительным, двухфазным или отрицательным.

В отведениях AVR зубец Т в норме всегда отрицательный.

Амплитуда зубца Т в отведениях от конечностей у здорового человека не превышает 5-6 мм, а в грудных отведениях - 15-17 мм. Продолжительность зубца колеблется от 0,16 до 0,24 с.

Интервал Q-T отражает время возбуждения и восстановления миокарда желудочков - электрическая система желудочков. Он изменяется от начала зубца Q (или R) до конца зубца Т. Его продолжительность зависит от частоты сердечного ритма: при учащении интервал Q-T укорачивается.

У женщин продолжительность интервала Q-T при одинаковой частоте сердечного ритма длиннее, чем у мужчин.

Анализ электрокардиограммы. Анализ следует начать с проверки правильности техники ее регистрации (наличие помех), амплитуды контрольного милливольта, оценок скорости движения бумаги.

Порядок расшифровки ЭКГ:

1. Анализ сердечного ритма и проводимости включает определение регулярности и числа сердечных сокращений, нахождения источника возбуждения, а также оценку функции проводимости.

Так как в норме водителем ритма является синусовый узел и возбуждение предсердий предшествует возбуждению желудочков, зубец Р должен располагаться перед желудочковым комплексом. Продолжительность интервалов R-R должна быть одинаковой (+10 % от средней продолжительности R-R).

Для подсчета числа сердечных сокращений нужно установить продолжительность одного сердечного цикла (интервал R-R) и вычислить, сколько таких циклов содержиться в 1 мин.

ЧСС = 60 / R-R.

При неправильном ритме находят среднюю продолжительность одного интервала R-R и после этого определяют частоту, как и при правильном ритме.

2. Определение положения электрической оси сердца проводится по форме желудочковых комплексов в стандартных отведениях.

Соотношение величины зубца R при нормальном положении электрической оси можно представить как R2 > R1 > R3.

Расположение электрической оси меняется при изменении положения сердца в грудной клетке. При низком стоянии диафрагмы у лиц астенического типа электрическая ось занимает более вертикальное положение, наиболее высокий зубец R будет регистрироваться в III отведении.

При высоком стоянии диафрагмы у гиперстеников электрическая ось располагается более горизонтально, поэтому наиболее высокий зубец R регистрируется в I отведении.

3. Изменение продолжительности и величины отдельных элементов ЭКГ. Измерения проводят в том стандартном отведении, где зубцы выражены наиболее хорошо (обычно во II).

Зубец R. Амплитуда его в норме не превышает 2,5 мм, длительность -0,1 с. При нормальном движении волны возбуждения по предсердиям зубцы Р в I, II, III отведениях положительные, а при направлении возбуждения снизу вверх - отрицательные.

Комплекс QRS. Для патологического зубца Q характерно увеличение его амплитуды более 1/4 зубца R в этом отведении, а продолжительность > 0,03 с.

Зубец R - измерить амплитуду, сопоставить с амплитудой зубца Q или S в том же отведении и с зубцом R в других отведениях; измерить продолжительность интервала внутреннего отклонения в отведениях V1 u V6.

Зубец S - измерить его амплитуду, сопоставить ее с амплитудой зубца R в том же отведении.

Сегмент RS-T. Анализируя его состояние, необходимо:
1) найти точку соединения j;
2) измерить ее отклонение от изолинии;
3) измерить величину смещения сегмента RS-T от изолинии вверх или вниз в точке, отстоящей от точки вправо на 0,05-0,08 с;
4) определить форму смещения - горизонтальное, косонисходящее, косовосходящее.

Зубец Т - определить направление (в большинстве отведений зубец Т положительный), оценить форму амплитуды.

Интервал Q-Т (электрическая систола желудочков). Расчет осуществляется по формуле Безетта (см. выше) или по таблицам.

Клиническое значение электрокардиографии трудно переоценить. Она оказывает большую помощь в выявлении нарушений сердечного ритма, в диагностике расстройств коронарного кровообращения, гипертофий различных отделов сердца, блокад. Но при всей ценности метода необходимо подчеркнуть, что оценивать ЭКГ следует только с учетом клинических и лабораторных данных, поскольку различные патологические процессы могут приводить к сходным ее изменениям, а отсутствие патологических изменений не всегда является нормой (даже при инфаркте миокарда больной может умереть с “нормальной” ЭКГ). Игнорирование клинических данных и переоценка метода электрокардиографии могут привести к серьезным диагностическим ошибкам. Достоинством метода является возможность его применения в любых условиях, безвредность для больного. Эти качества привели к широкому внедрению электрокардиографии в практическую медицину.

Чтобы понять, как работает электрокардиограф, какие процессы в организме он регистрирует, и что показывает электрокардиограмма - надо описать суть физических процессов, происходящих при сокращении сердечной мышцы.

Восстановим в памяти элементарные знания из курса школьной физики и алгебры.

Работа сердечной мышцы - это электрический процесс, постоянно текущий в организме. Пространство, в котором наблюдается действие электрических сил, называется электрическим полем. Электрическое поле подразумевает существование двух зарядов - положительного и отрицательного. Такой тандем зарядов называется электрическим диполем . На рисунке, с помощью силовых линий, изображено электрическое поле диполя. Между отрицательным и положительным зарядом находится нулевая линия, на которой величина заряда равна нулю. В точке А находящейся на расстоянии R от центра диполя (расстояние R много больше расстояния между зарядами), поле E (направленное по касательной к силовой линии) разложено на две компоненты: E1 - параллельную оси диполя и E2 - перпендикулярную к ней.

Электрический диполь создает разность потенциалов . Вообще, чтобы в любой электрической цепи начал протекать ток, необходима некая внешняя сила неэлектростатической природы. Например, электрический ток, который мы извлекаем в бытовых условиях из электрической розетки - по природе, это энергия падающей воды на ГЭС, или энергия расщепляемого атома на АЭС, или тепловая энергия угля на ТЭЦ. Электрический ток, получаемый в автомобиле - это энергия химических превращений в аккумуляторе, или энергия сжигаемого бензина в двигателе. Электрический ток, заставляющий работать наше сердце, получается в результате биохимических процессов, постоянно текущих в организме. Очень точно это было подмечено в одной из песен некогда популярной рок-группы "Круиз": "Что наша жизнь - обмен веществ в природе".

Но, вернемся к нашим "баранам". Величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока называется электродвижущей силой (ЭДС). Вектор ЭДС диполя изображается отрезком прямой, соединяющим оба его полюса, и направлен от отрицательного к положительному заряду.

Вернемся к нашему диполю. ЭДС является векторной величиной, т.к. характеризуется величиной и направлением в пространстве. Изображается ЭДС в виде прямой со стрелкой на конце. Длина этой прямой характеризует величину ЭДС, а местоположение в пространстве - направление.

Нулевая изопотенциальная линия (изопотенциальная - значит соединяющая точки с одинаковым потенциалом) разделяет поле диполя на две половины - положительное и отрицательное поле. Изопотенциальные линии, расположенные в положительном поле, называются положительными; в отрицательном поле - отрицательными. На рисунке изопотенциальные линии изображены в виде концентрических эллипсов, расположенных вокруг положительного и отрицательного зарядов. Наибольший отрицательный заряд находится рядом с нулевой линией со стороны отрицательного поля, наибольший положительный - со стороны положительного поля. Сила заряда убывает обратно пропорционально квадрату расстояния от него.

Основоположник электрокардиографии Вильям Эйнтховен рассматривал сердце, как источник электрического тока (во время возбуждения которого в организме образуется электрическое поле), расположенный в центре треугольника, ограниченного правой и левой рукой, и левой ногой (треугольник Эйнтховена ). Им было сделано допущение, что тело человека - это проводник тока с постоянным электрическим сопротивлением во всех участках. Левая, правая рука, и левая нога принимались им за три равноудаленные друг от друга и от центра (в котором находится сердце) точки, лежащих в одной фронтальной плоскости. Эйнтховен предположил, что, возникающий во время возбуждения сердца, вектор ЭДС смещался также только во фронтальной плоскости. В дальнейшем эта теория была дополнена и переработана, т.к. различные участки тела человека обладают различным сопротивлением, а электрическое поле сердца постоянно меняет величину и направление и меняется не только во фронтальной проекции. Дальнейшие многочисленные исследования подтвердили применимость теории диполя в клинической электрокардиографии.

Для измерения величины потенциала в различных точках поля используют гальванометры - основной узел электрокардиографа. ЭДС измеряется при помощи двух электродов, которые подсоединяются к положительному и отрицательному полюсам гальванометра.

У гальванометра существует два типа электродов: активный (дифферентный) электрод и неактивный (индифферентный) электрод. Неактивный электрод имеет заряд близкий к нулю (можно сказать, что это электрическая "масса", по аналогии с автомобильным аккумулятором) и присоединяется к отрицательному полюсу гальванометра. Активный электрод присоединяется к положительному полюсу гальванометра и показывает потенциал той точки электрического поля, в которой он находится. Если активный электрод находится в области положительного поля, то гальванометр регистрирует подъем кривой от изолинии (положительный зубец); если в области отрицательного поля - записывается снижение кривой (отрицательный зубец).

Следует знать, что гальванометр регистрирует разность потенциалов. Т.е., прибор будет фиксировать изменение кривой, если на оба электрода подан одинаковый по знаку заряд, но разный по величине.

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!