50 научные революции и смена типов рациональности. Научные революции и смены типов научной рациональности. Рациональный - относящийся к разуму, установленное и обоснованное разумом, проистекающее из него

Этапы развития науки, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки, получили название научных революций. Главными компонентами основания пауки являются идеалы и методы исследования (представления о целях научной деятельности и способах их достижений); научная картина мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующихся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели. методы, нормы и идеалы научного исследования.

Причины революций:

1. внутри-дисциплинарное развитие, в ходе которого возникают проблемы неразрешимые в рамках данной научной дисциплины.

2. научные революции возможны благодаря междисциплинарным взаимодействиям, основанным на переносе идеалов и норм исследования из одной научной дисциплины в другую, что приводит часто к открытию явлений и законов, которые до этого не попадали в сферу научного поиска.

В зависимости от того. Какой компонент основания науки перестраивается, различают две разновидности научной революции:

а) идеалы и нормы научного исследования остаются неизменными, а картина мира пересматривается;

б) одновременно с картиной мира радикально меняются не только идеалы и нормы науки, но и ее философские основания.

революции знаменуются формированием соответствующих типов научной рациональности , под которыми понимается специфический стиль мышления и соответствующий ему продукт - научное знание. Существует 4 главных ее типа: логико-математическая, естественнонаучная, инженерно-технологическая и социально-гуманитарная. Такие перемены следует рассматривать в триединой системе взаимодействия «субъект - средства - объект»

Первая научная революция сопровождалась изменением картины мира, перестройкой видения физической реальности, созданием идеалов и норм классического естествознания. Первая научная революция произошла в ХVII в. Ее результатом было возникновение классической европейской науки, прежде всего, механики, а позже физики.

Вторая научная революция , хотя, в общем, и закончилась окончательным становлением классического естествознания, тем не менее способствовала началу пересмотра идеалов и норм научного познания, сформировавшихся в период первой научной революции. Вторая научная революция произошла в конце XVIII—первой половине XIX в. Несмотря на то. что к началу XX в. идеал классического естествознания не претерпел значительных изменений, все же есть все основания говорить о второй научной революции. Произошел переход от классической пауки, ориентированной в основном на изучение механических и физических явлений, к дисциплинарно организованной науке.

Третья и четвертая научные революции привели к пересмотру всех указанных выше компонентов основания классической науки.

Третья научная революция охватывает период с конца XIX в. до середины XX в. Революционные преобразования произошли сразу во многих науках: в физике были разработаны релятивистская и квантовая теории. в биологии — генетика, в химии — квантовая химия и т.д.

Четвертая научная революция совершилась в последнюю треть XX столетия. Она связана с появлением особых объектов исследования. что привело к радикальным изменениям в основаниях науки.

Феномен научных революций

В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций.

Что такое научная революция?

Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования.

Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях: а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования; б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки.

В истории естествознания можно обнаружить образцы обеих ситуаций интенсивного роста знаний. Примером первой из них может служить переход от механической к электродинамической картине мира, осуществленный в физике последней четверти XIX столетия в связи с построением классической теории электромагнитного поля. Этот переход, хотя и сопровождался довольно радикальной перестройкой видения физической реальности, существенно не менял познавательных установок классической физики (сохранилось понимание объяснения как поиска субстанциональных оснований объясняемых явлений и жестко детерминированных связей между явлениями; из принципов объяснения и обоснования элиминировались любые указания на средства наблюдения и операциональные структуры, посредством которых выявляется сущность исследуемых объектов и т.д.).

Примером второй ситуации может служить история квантово-релятивистской физики, характеризовавшаяся перестройкой классических идеалов объяснения, описания, обоснования и организации знаний.

Новая картина исследуемой реальности и новые нормы познавательной деятельности, утверждаясь в некоторой науке, затем могут оказать революционизирующее воздействие на другие науки. В этой связи можно выделить два пути перестройки оснований исследования: 1) за счет внутридисциплинарного развития знаний; 2) за счет междисциплинарных связей, "прививки" парадигмальных установок одной науки на другую.

Оба эти пути в реальной истории науки как бы накладываются друг на друга, поэтому в большинстве случаев правильнее говорить о доминировании одного из них в каждой из наук на том или ином этапе ее исторического развития.

Перестройка оснований научной дисциплины в результате ее внутреннего развития обычно начинается с накопления фактов, которые не находят объяснения в рамках ранее сложившейся картины мира. Такие факты выражают характеристики новых типов объектов, которые наука втягивает в орбиту исследования в процессе решения специальных эмпирических и теоретических задач. К обнаружению указанных объектов может привести совершенствование средств и методов исследования (например, появление новых приборов, аппаратуры, приемов наблюдения, новых математических средств и т.д.).

В системе новых фактов могут быть не только аномалии, не получающие своего теоретического объяснения, но и факты, приводящие к парадоксам при попытках их теоретической ассимиляции.

Парадоксы могут возникать вначале в рамках конкретных теоретических моделей, при попытке объяснения явлений. Примером тому могут служить парадоксы, возникшие в модели излучения абсолютно черного тела и предшествовавшие идеям квантовой теории. Известно, что важную роль в ее развитии сыграло открытие Планком дискретного характера излучения. Само это открытие явилось результатом очень длительных теоретических исследований, связанных с решением задачи излучения и поглощения электромагнитных волн нагретыми телами. Для объяснения этих явлений в физике была построена конкретная теоретическая модель - абсолютно черного тела, излучающего и поглощающего электромагнитное поле. На базе этой модели, которая уточнялась и конкретизировалась под влиянием опыта, были найдены конкретные законы, один из которых описывал излучение тел в диапазоне коротких электромагнитных волн, а другой - длинноволновое электромагнитное излучение.

Задача синтеза этих законов была решена Максом Планком, который, используя уравнения электродинамики и термодинамики, нашел обобщающую формулу закона излучения абсолютно черного тела. Но из полученного Планком закона вытекали крайне неожиданные следствия: выяснилось, что абсолютно черное тело должно излучать и поглощать электромагнитную энергию порциями - квантами, равными hn, где h - это постоянная Планка, а n - частота излучения. Так возникла критическая ситуация: если принять положение, что электромагнитное поле носит дискретный характер, то это противоречило принципу тогдашней научной картины мира, согласно которому электромагнитное излучение представляет собой непрерывные волны в мировом эфире. Причем принцип непрерывности электромагнитного поля лежал в фундаменте электродинамики Максвелла и был обоснован огромным количеством опытов.

Итак, получилось, что, с одной стороны, следствие закона, проверяемого опытом, а с другой стороны, принцип, входящий в научную картину мира и подтвержденный еще большим количеством фактов, противоречат друг другу. Такого рода парадоксы являются своеобразным сигналом того, что наука натолкнулась на какой-то новый тип процесса, существенные черты которого не учтены в представлениях принятой научной картины мира.

Парадокс привел к постановке проблемы: как же реально "устроено" электромагнитное поле, является ли оно непрерывным или дискретным? Показательно, что все началось с конкретной задачи, которая была подсказана принципами физической картины мира, но затем вопрос встал о правомерности самих этих принципов, т.е. частная задача переросла в фундаментальную проблему. Планк эту проблему не смог разрешить. Он не хотел отказываться от старых принципов и стремился устранить парадокс за счет введения некоторых поправок в модель абсолютно черного тела, модернизировать ее так, чтобы конкретная теория, которую он разрабатывал, не противоречила бы ранее утвердившейся научной картине мира.

Кстати, в науке часто так бывает, что ученый, который делает открытие, не может дать ему верное истолкование. Введенные Планком дополнительные предположения, так называемые ad hoc гипотезы, которые предназначались для спасения старой картины мира, в конечном счете не решали проблему. Более того, они просто переводили парадокс на иной уровень, поскольку введение в состав теории все новых ad hoc гипотез приводит к противоречиям с фундаментальным идеалом теоретического объяснения, который требует объяснения возрастающего многообразия явлений, исходя из как можно меньшего числа постулатов. Если безгранично увеличивать количество объясняющих постулатов, то в пределе может возникнуть ситуация, когда для каждого нового факта будет вводиться новый принцип, что эквивалентно разрушению самой идеи теоретического объяснения.

Разрешил парадоксы теории А. Эйнштейн, предложив изменить представления научной картины мира о структуре электромагнитного поля, используя идею корпускулярно-волнового дуализма. Интересно, что Эйнштейн проделал работу в этой области примерно в то же время, когда создавал специальную теорию относительности. Обе эти теории были связаны с радикальной ломкой сложившейся научной картины мира, и само покушение на принципы научной картины мира было подготовлено предшествующим развитием науки и культуры.

Пересмотр картины мира и идеалов познания всегда начинается с критического осмысления их природы. Если ранее они воспринимались как выражение самого существа исследуемой реальности и процедур научного познания, то теперь осознается их относительный, преходящий характер. Такое осознание предполагает постановку вопросов об отношении картины мира к исследуемой реальности и понимании историчности идеалов познания. Постановка таких вопросов означает, что исследователь из сферы специально научных проблем выходит в сферу философской проблематики. Философский анализ является необходимым моментом критики старых оснований научного поиска.

Но кроме этой, критической функции, философия выполняет конструктивную функцию, помогая выработать новые основания исследования. Ни картина мира, ни идеалы объяснения, обоснования и организации знаний не могут быть получены чисто индуктивным путем из нового эмпирического материала. Сам этот материал организуется и объясняется в соответствии с некоторыми способами его видения, а эти способы задают картина мира и идеалы познания. Новый эмпирический материал может обнаружить лишь несоответствие старого видения новой реальности, но сам по себе не указывает, как нужно перестроить это видение.

Перестройка картины мира и идеалов познания требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности и процедурах ее познания, элиминировать часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы и ассимилировать накопленные факты. Такие идеи формируются в сфере философского анализа познавательных ситуаций науки. Они играют роль весьма общей эвристики, обеспечивающей интенсивное развитие исследований. В истории современной физики примерами тому могут служить философский анализ понятий пространства и времени, а также анализ операциональных оснований физической теории, проделанный Эйнштейном и предшествовавший перестройке представлений об абсолютном пространстве и времени классической физики.

Философско-методологические средства активно используются при перестройке оснований науки и в той ситуации, когда доминирующую роль играют факторы междисциплинарного взаимодействия. Особенности этого варианта научной революции состоят в том, что для преобразования картины реальности и норм исследования некоторой науки в принципе не обязательно, чтобы в ней были зафиксированы парадоксы. Преобразование ее оснований осуществляется за счет переноса парадигмальных установок и принципов из других дисциплин, что заставляет исследователей по-новому оценить еще не объясненные факты (если раньше считалось, по крайней мере большинством исследователей, что указанные факты можно объяснить в рамках ранее принятых оснований науки, то давление новых установок способно породить оценку указанных фактов как аномалий, объяснение которых предполагает перестройку оснований исследования). Обычно в качестве парадигмальных принципов, "прививаемых" в другие науки, выступают компоненты оснований лидирующей науки. Ядро ее картины реальности образует в определенную историческую эпоху фундамент общей научной картины мира, а принятые в ней идеалы и нормы обретают общенаучный статус. Философское осмысление и обоснование этого статуса подготавливает почву для трансляции некоторых идей, принципов и методов лидирующей дисциплины в другие науки.

Внедряясь в новую отрасль исследования, парадигмальные принципы науки затем как бы притачиваются к специфике новой области, превращаясь в картину реальности соответствующей дисциплины и в новые для нее нормативы исследования. Показательным примером в этом отношении могут служить революции в химии XVII - первой половине XIX столетия, связанные с переносом в химию из физики идеалов количественного описания, представлений о силовых взаимодействиях между частицами и представлений об атомах. Идеалы количественного описания привели к разработке в химии XVII - XVIII вв. конкретных методов количественного анализа, которые, в свою очередь, взрывали изнутри флогистонную концепцию химических процессов. Представления о силовых взаимодействиях и атомистическом строении вещества, заимствованные из механической картины мира, способствовали формированию новой картины химической реальности, в которой взаимодействия химических элементов интерпретировались как действие "сил химического сродства" (А. Лавуазье, К. Бертолле), а химические элементы были представлены в качестве атомов вещества (первый гипотетический вариант этих представлений в химии был предложен Р. Бойлем еще в XVII столетии, а в начале XIX в. благодаря работам Дальтона атомистические идеи получили эмпирическое обоснование и окончательно утвердились в химии).

Парадигмальные принципы, модифицированные и развитые применительно к специфике объектов некоторой дисциплины, затем могут оказать обратное воздействие на те науки, из которых они были первоначально заимствованы. В частности, развитые в химии представления о молекулах как соединении атомов затем вошли в общую научную картину мира и через нее оказали значительное воздействие на физику в период разработки молекулярно-кинетической теории теплоты.

На современном этапе развития научного знания в связи с усиливающимися процессами взаимодействия наук способы перестройки оснований за счет "прививки" парадигмальных установок из одной науки в другие все активнее начинают влиять на внутридисциплинарные механизмы интенсивного роста знаний и даже управлять этими механизмами.

Научная революция как выбор новых стратегий исследования

Перестройка оснований исследования означает изменение самой стратегии научного поиска. Однако всякая новая стратегия утверждается не сразу, а в длительной борьбе с прежними установками и традиционными видениями реальности.

Процесс утверждения в науке ее новых оснований определен не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера.

Новые познавательные установки и генерированные ими знания должны быть вписаны в культуру соответствующей исторической эпохи и согласованы с лежащими в ее фундаменте ценностями и мировоззренческими структурами.

Перестройка оснований науки в период научной революции с этой точки зрения представляет собой выбор особых направлений роста знаний, обеспечивающих как расширение диапазона исследования объектов, так и определенную скоррелированность динамики знания с ценностями и мировоззренческими установками соответствующей исторической эпохи. В период научной революции имеются несколько возможных путей роста знания, которые, однако, не все реализуются в действительной истории науки. Можно выделить два аспекта нелинейности роста знаний.

Первый из них связан с конкуренцией исследовательских программ в рамках отдельно взятой отрасли науки. Победа одной и вырождение другой программы направляют развитие этой отрасли науки по определенному руслу, но вместе с тем закрывают какие-то иные пути ее возможного развития.

Рассмотрим в качестве примера борьбу двух направлений в классической электродинамике Ампера-Вебера, с одной стороны, и Фарадея-Максвелла, с другой. Максвелл, создавая теорию электромагнитного поля, длительное время не получал новых результатов, по сравнению с теми, которые давала электродинамика Ампера-Вебера. Внешне все выглядело как вывод уже известных законов в новой математической форме. Лишь в конечном итоге, открыв фундаментальные уравнения электромагнетизма, Максвелл получил знаменитые волновые решения и предсказал существование электромагнитных волн. Их экспериментальное обнаружение привело к триумфу максвелловского направления и утвердило представления о близкодействии и силовых полях как единственно верную основу физической картины мира.

Однако в принципе эффекты, которые интерпретировались как доказательство электромагнитных волн, могли быть предсказаны и в рамках амперовского направления. Известно, что в 1845 г. К. Гаусс в письме к В. Веберу указывал, что для дальнейшего развития теории Ампера-Вебера следует в дополнение к известным силам действия между зарядами допустить существование других сил, распространяющихся с конечной скоростью. Г. Риман осуществил эту программу и вывел уравнение для потенциала, аналогичное лоренцовским уравнениям для запаздывающих потенциалов. В принципе это уравнение могло бы лечь в основу предсказания тех эффектов, которые были интерпретированы в парадигме максвелловской электродинамики как распространение электромагнитных волн. Но этот путь развития электродинамики предполагал физическую картину мира, в которой постулировалось распространение сил с различной скоростью в пустом пространстве. В такой картине мира отсутствует эфир и представление об электромагнитных полях. И тогда возникает вопрос: как могла бы выглядеть в этой нереализованной линии развития физики теория электронов, каков был бы путь к теории относительности.

Физическая картина мира, в которой взаимодействие зарядов изображалось бы как передача сил с конечной скоростью без представлений о материальных полях, вполне возможна. Показательно, что именно такой образ электромагнитных взаимодействий Р. Фейнман использовал как основу для новой формулировки классической электродинамики, опираясь на которую он развил идею построения квантовой электродинамики в терминах интегралов по траекториям. В какой-то мере можно расценивать фейнмановскую переформулировку классической электродинамики как воспроизведение в современных условиях ранее нереализованных, но потенциально возможных путей исторического развития физики. Однако при этом необходимо учитывать, что современные представления о природе формируются уже в иной научной традиции, чем в классическую эпоху, при наличии новых идеалов и норм объяснения физических процессов. Развитие квантово-релятивистской физики, утверждая эти нормы, "приучило" физиков к множественности различных формулировок теории, каждая из которых способна выразить существенные характеристики исследуемой предметной области. Физик-теоретик XX в. относится к различным математическим описаниям одних и тех же процессов не как к аномалии, а как к норме, понимая, что одни и те же объекты могут быть освоены в различных языковых средствах и что различные формулировки одной и той же физической теории являются условием прогресса исследований. В традициях современной физики лежит и оценка картины мира как относительно истинной системы представлений о физическом мире, которая может изменяться и совершенствоваться как в частях, так и в целом.

Поэтому, когда, например, Р. Фейнман развивал идеи о взаимодействиях зарядов без "полевых посредников", его не смутило то обстоятельство, что в создаваемую теорию потребовалось ввести, наряду с запаздывающими, опережающие потенциалы, что в физической картине мира соответствовало появлению представлений о влиянии взаимодействий настоящего не только на будущее, но и на прошлое. "К этому времени, - писал Р. Фейнман, - я был уже в достаточной мере физиком, чтобы не сказать: "Ну, нет, этого не может быть". Ведь сегодня после Эйнштейна и Бора все физики знают, что иногда идея, кажущаяся с первого взгляда совершенно парадоксальной, может оказаться правильной после того, как мы разберемся в ней до мельчайших подробностей и до самого конца и найдем ее связь с экспериментом". Но "быть физиком" XX в. - нечто иное, чем "быть физиком" XIX в. В классический период физик не стал бы вводить "экстравагантных" представлений о физическом мире на том основании, что у него возникает новая и перспективная математическая форма теории, детали эмпирического обоснования которой можно разработать в будущем. В классическую эпоху физическая картина мира, прежде чем генерировать новые теоретические идеи, должна была предстать как подтверждаемый опытом "наглядный портрет" реальности, который предшествовал построению теории. Формирование конкурирующих картин исследуемой реальности предполагало жесткую их конфронтацию, в условиях которой каждая из них рассматривалась своими сторонниками как единственно правильная онтология.

С этих позиций следует оценивать возможности реализации программы Гаусса-Римана в физике XIX столетия. Чтобы ввести в физическую картину мира этой эпохи представление о силах, распространяющихся с различными скоростями, нужно было обосновать это представление в качестве наглядного образа "реального устройства природы". В традициях физического мышления этой эпохи сила всегда связывалась с материальным носителем. Поэтому ее изменения во времени от точки к точке (разные скорости распространения силы) предполагали введение материальной субстанции, с состоянием которой связано изменение скорости распространения сил. Но такие представления уже лежали в русле фарадеевско-максвелловской программы и были несовместимы с картиной Ампера-Вебера (в этой картине связь силы и материи рассматривалась как взаимосвязь между электрическими силами и силами тяготения, с одной стороны, и зарядами и массами - с другой; заряды и массы представали здесь в качестве материального носителя сил; принцип же мгновенной передачи сил в пространстве исключал необходимость введения особой субстанции, обеспечивающей передачу сил от точки к точке). Таким образом, причины, по которым идея Гаусса-Римана не оставила значительного следа в истории классической электродинамики XIX столетия, коренилась в стиле физического мышления данной исторической эпохи. Этот стиль мышления с его интенцией на построение окончательно истинных представлений о сущности физического мира был одним из проявлений "классического" типа рациональности, реализованного в философии, науке и других феноменах сознания этой исторической эпохи. Такой тип рациональности предполагает, что мышление как бы со стороны обозревает объект, постигая таким путем его истинную природу.

Современный же стиль физического мышления (в рамках которого была осуществлена нереализованная, но возможная линия развития классической электродинамики) предстает как проявление иного, неклассического типа рациональности, который характеризуется особым отношением мышления к объекту и самому себе. Здесь мышление воспроизводит объект как вплетенный в человеческую деятельность и строит образы объекта, соотнося их с представлениями об исторически сложившихся средствах его освоения. Мышление нащупывает далее и с той или иной степенью отчетливости осознает, что оно само есть аспект социального развития и поэтому детерминировано этим развитием. В таком типе рациональности однажды полученные образы сущности объекта не рассматриваются как единственно возможные (в иной системе языка, в иных познавательных ситуациях образ объекта может быть иным, причем во всех этих варьируемых представлениях об объекте можно выразить объективно-истинное содержание).

Сам процесс формирования современного типа рациональности обусловлен процессами исторического развития общества, изменением "поля социальной механики", которая "подставляет вещи сознанию". Исследование этих процессов представляет собой особую задачу. Но в общей форме можно констатировать, что тип научного мышления, складывающийся в культуре некоторой исторической эпохи, всегда скоррелирован с характером общения и деятельности людей данной эпохи, обусловлен контекстом ее культуры. Факторы социальной детерминации познания воздействуют на соперничество исследовательских программ, активизируя одни пути их развертывания и притормаживая другие. В результате "селективной работы" этих факторов в рамках каждой научной дисциплины реализуются лишь некоторые из потенциально возможных путей научного развития, а остальные остаются нереализованными тенденциями.

Второй аспект нелинейности роста научного знания связан со взаимодействием научных дисциплин, обусловленным в свою очередь особенностями как исследуемых объектов, так и социокультурной среды, внутри которой развивается наука.

Возникновение новых отраслей знания, смена лидеров науки, революции, связанные с преобразованиями картин исследуемой реальности и нормативов научной деятельности в отдельных ее отраслях, могут оказывать существенное воздействие на другие отрасли знания, изменяя их видение реальности, их идеалы и нормы исследования. Все эти процессы взаимодействия наук опосредуются различными феноменами культуры и сами оказывают на них активное обратное воздействие.

Учитывая все эти сложные опосредования, в развитии каждой науки можно выделить еще один тип потенциально возможных линий в ее истории, который представляет собой специфический аспект нелинейности научного прогресса. Особенности этого аспекта можно проиллюстрировать путем анализа истории квантовой механики.

Известно, что одним из ключевых моментов ее построения была разработка Н. Бором новой методологической идеи, согласно которой представления о физическом мире должны вводиться через экспликацию операциональной схемы, выявляющей характеристики исследуемых объектов. В квантовой физике эта схема выражена посредством принципа дополнительности, согласно которому природа микрообъекта описывается путем двух дополнительных характеристик, коррелятивных двум типам приборов. Эта "операциональная схема" соединялась с рядом онтологических представлений, например, о корпускулярно-волновой природе микрообъектов, существовании кванта действия, об объективной взаимосвязи динамических и статических закономерностей физических процессов.

Однако квантовая картина физического мира не была целостной онтологией в традиционном понимании. Она не изображала природные процессы как причинно обусловленные взаимодействия некоторых объектов в пространстве и времени. Пространственно-временное и причинное описания представали как дополнительные (в смысле Бора) характеристики поведения микрообъектов.

Отнесение к микрообъекту обоих типов описания осуществлялось только через экспликацию операциональной схемы, которая объединяла различные и внешне несовместимые фрагменты онтологических представлений. Такой способ построения физической картины мира получил философское обоснование, с одной стороны, посредством ряда гносеологических идей (об особом месте в мире наблюдателя как макросущества, о коррелятивности между способами объяснения и описания объекта и познавательными средствами), а с другой - благодаря развитию "категориальной сетки", в которой схватывались общие особенности предмета исследования (представление о взаимодействиях как превращении возможности в действительность, понимание причинности в широком смысле, как включающей вероятностные аспекты, и т.д.).

Таким путем была построена концептуальная интерпретация математического аппарата квантовой механики. В период формирования этой теории описанный путь был, по-видимому, единственно возможным способом теоретического познания микромира. Но в дальнейшем (в частности, на современном этапе) наметилось видение квантовых объектов как сложных динамических систем (больших систем). Анализ квантовой теории показывает, что в самой ее концептуальной структуре имеются два уровня описания реальности: с одной стороны, понятия, описывающие целостность и устойчивость системы, с другой - понятия, выражающие типично случайные ее характеристики. Идея такого расчленения теоретического описания соответствует представлению о сложных системах, характеризующихся, с одной стороны, наличием подсистем со стохастическим взаимодействием между элементами, с другой - некоторым "управляющим" уровнем, обеспечивающим целостность системы. В пользу такого видения квантовых объектов говорят и те достижения теории квантованных полей, которые показывают ограниченность сложившихся представлений о локализации частиц.

Отмечая все эти тенденции в развитии физического знания, нельзя забывать, что само видение физических объектов как сложных динамических систем связано с концепцией, которая сформировалась благодаря развитию кибернетики, теории систем и освоению больших систем в производстве. В период становления квантовой механики эта концепция еще не сложилась в науке, и в обиходе физического мышления не применялись представления об объектах как больших системах. В этой связи уместно поставить вопрос: могла ли история квантовой физики протекать иными путями при условии иного научного окружения? В принципе допустимо (в качестве мысленного эксперимента) предположение, что кибернетика и соответствующее освоение самоорганизующихся систем в технике могли возникнуть до квантовой физики и сформировать в культуре новый тип видения объектов. В этих условиях при построении картины мира физик смог бы представить квантовые объекты как сложные динамические системы и соответственно этому представлению создавать теорию. Но тогда иначе выглядела бы вся последующая эволюция физики. На этом пути ее развития, по-видимому, были бы не только приобретения, но и потери, поскольку при таком движении не обязательно сразу эксплицировать операциональную схему видения картины мира (а значит, и не было бы стимула к развитию принципа дополнительности). То обстоятельство, что квантовая физика развилась на основе концепции дополнительности, радикально изменив классические нормы и идеалы физического познания, направило эволюцию науки по особому руслу. Появился образец нового познавательного движения, и теперь, даже если физика построит новую системную онтологию (новую картину реальности), это не будет простым возвратом к нереализованному ранее пути развития: онтология должна вводиться через построение операциональной схемы, а новая теория может создаваться на основе включения операциональных структур в картину мира.

Развитие науки (как, впрочем, и любой другой процесс развития) осуществляется как превращение возможности в действительность, и не все возможности реализуются в ее истории. При прогнозировании таких процессов всегда строят дерево возможностей, учитывают различные варианты и направления развития. Представления о жестко детерминированном развитии науки возникают только при ретроспективном рассмотрении, когда мы анализируем историю, уже зная конечный результат, и восстанавливаем логику движения идей, приводящих к этому результату. Но были возможны и такие направления, которые могли бы реализоваться при других поворотах исторического развития цивилизации, но они оказались "закрытыми" в уже осуществившейся реальной истории науки.

В эпоху научных революций, когда осуществляется перестройка оснований науки, культура как бы отбирает из нескольких потенциально возможных линий будущей истории науки те, которые наилучшим образом соответствуют фундаментальным ценностям и мировоззренческим структурам, доминирующим в данной культуре.

Глобальные научные революции: от классической к постнеклассической науке

В развитии науки можно выделить такие периоды, когда преобразовывались все компоненты ее оснований. Смена научных картин мира сопровождалась коренным изменением нормативных структур исследования, а также философских оснований науки. Эти периоды правомерно рассматривать как глобальные революции, которые могут приводить к изменению типа научной рациональности.

В истории естествознания можно обнаружить четыре таких революции. Первой из них была революция XVII в., ознаменовавшая собой становление классического естествознания.

Его возникновение было неразрывно связано с формированием особой системы идеалов и норм исследования, в которых, с одной стороны, выражались установки классической науки, а с другой - осуществлялась их конкретизация с учетом доминанты механики в системе научного знания данной эпохи.

Через все классическое естествознание начиная с XVII в. проходит идея, согласно которой объективность и предметность научного знания достигается только тогда, когда из описания и объяснения исключается все, что относится к субъекту и процедурам его познавательной деятельности. Эти процедуры принимались как раз навсегда данные и неизменные. Идеалом было построение абсолютно истинной картины природы. Главное внимание уделялось поиску очевидных, наглядных, "вытекающих из опыта" онтологических принципов, на базе которых можно строить теории, объясняющие и предсказывающие опытные факты.

В XVIIXVIII столетии эти идеалы и нормативы исследования сплавлялись с целым рядом конкретизирующих положений, которые выражали установки механического понимания природы. Объяснение истолковывалось как поиск механических причин и субстанций - носителей сил, которые детерминируют наблюдаемые явления. В понимание обоснования включалась идея редукции знания о природе к фундаментальным принципам и представлениям механики.

В соответствии с этими установками строилась и развивалась механическая картина природы, которая выступала одновременно и как картина реальности, применительно к сфере физического знания, и как общенаучная картина мира.

Наконец, идеалы, нормы и онтологические принципы естествознания XVIIXVIII столетий опирались на специфическую систему философских оснований, в которых доминирующую роль играли идеи механицизма. В качестве эпистемологической составляющей этой системы выступали представления о познании как наблюдении и экспериментировании с объектами природы, которые раскрывают тайны своего бытия познающему разуму. Причем сам разум наделялся статусом суверенности. В идеале он трактовался как дистанцированный от вещей, как бы со стороны наблюдающий и исследующий их, не детерминированный никакими предпосылками, кроме свойств и характеристик изучаемых объектов.

Эта система эпистемологических идей соединялась с особыми представлениями об изучаемых объектах. Они рассматривались преимущественно в качестве малых систем (механических устройств) и соответственно этому применялась "категориальная сетка", определяющая понимание и познание природы. Напомним, что малая система характеризуется относительно небольшим количеством элементов, их силовыми взаимодействиями и жестко детерминированными связями. Для их освоения достаточно полагать, что свойства целого полностью определяются состоянием и свойствами его частей, вещь представлять как относительно устойчивое тело, а процесс как перемещение тел в пространстве с течением времени, причинность трактовать в лапласовском смысле. Соответствующие смыслы как раз и выделялись в категориях "вещь", "процесс", "часть", "целое", "причинность", "пространство" и "время" и т.д., которые образовали онтологическую составляющую философских оснований естествознания XVIIXVIII вв. Эта категориальная матрица обеспечивала успех механики и предопределяла редукцию к ее представлениям всех других областей естественно-научного исследования.

Радикальные перемены в этой целостной и относительно устойчивой системе оснований естествознания произошли в конце XVIII - первой половине XIX в. Их можно расценить как вторую глобальную научную революцию, определившую переход к новому состоянию естествознания - дисциплинарно организованной науке.

В это время механическая картина мира утрачивает статус общенаучной. В биологии, химии и других областях знания формируются специфические картины реальности, нередуцируемые к механической.

Одновременно происходит дифференциация дисциплинарных идеалов и норм исследования. Например, в биологии и геологии возникают идеалы эволюционного объяснения, в то время как физика продолжает строить свои знания, абстрагируясь от идеи развития. Но и в ней, с разработкой теории поля, начинают постепенно размываться ранее доминировавшие нормы механического объяснения. Все эти изменения затрагивали главным образом третий слой организации идеалов и норм исследования, выражающий специфику изучаемых объектов. Что же касается общих познавательных установок классической науки, то они еще сохраняются в данный исторический период.

Соответственно особенностям дисциплинарной организации науки видоизменяются ее философские основания. Они становятся гетерогенными, включают довольно широкий спектр смыслов тех основных категориальных схем, в соответствии с которыми осваиваются объекты (от сохранения в определенных пределах механицистской традиции до включения в понимание "вещи", "состояния", "процесса" и другие идеи развития). В эпистемологии центральной становится проблема соотношения разнообразных методов науки, синтеза знаний и классификации наук. Выдвижение ее на передний план связано с утратой прежней целостности научной картины мира, а также с появлением специфики нормативных структур в различных областях научного исследования. Поиск путей единства науки, проблема дифференциации и интеграции знания превращаются в одну из фундаментальных философских проблем, сохраняя свою остроту на протяжении всего последующего развития науки.

Первая и вторая глобальные революции в естествознании протекали как формирование и развитие классической науки и ее стиля мышления.

Третья глобальная научная революция была связана с преобразованием этого стиля и становлением нового, неклассического естествознания. Она охватывает период с конца XIX до середины XX столетия. В эту эпоху происходит своеобразная цепная реакция революционных перемен в различных областях знания: в физике (открытие делимости атома, становление релятивистской и квантовой теории), в космологии (концепция нестационарной Вселенной), в химии (квантовая химия), в биологии (становление генетики). Возникает кибернетика и теория систем, сыгравшие важнейшую роль в развитии современной научной картины мира.

В процессе всех этих революционных преобразований формировались идеалы и нормы новой, неклассической науки. Они характеризовались отказом от прямолинейного онтологизма и пониманием относительной истинности теорий и картины природы, выработанной на том или ином этапе развития естествознания. В противовес идеалу единственно истинной теории, "фотографирующей" исследуемые объекты, допускается истинность нескольких отличающихся друг от друга конкретных теоретических описаний одной и той же реальности, поскольку в каждом из них может содержаться момент объективно-истинного знания. Осмысливаются корреляции между онтологическими постулатами науки и характеристиками метода, посредством которого осваивается объект. В связи с этим принимаются такие типы объяснения и описания, которые в явном виде содержат ссылки на средства и операции познавательной деятельности. Наиболее ярким образцом такого подхода выступали идеалы и нормы объяснения, описания и доказательности знаний, утвердившиеся в квантово-релятивистской физике. Если в классической физике идеал объяснения и описания предполагал характеристику объекта "самого по себе", без указания на средства его исследования, то в квантово-релятивистской физике в качестве необходимого условия объективности объяснения и описания выдвигается требование четкой фиксации особенностей средств наблюдения, которые взаимодействуют с объектом (классический способ объяснения и описания может быть представлен как идеализация, рациональные моменты которой обобщаются в рамках нового подхода).

Изменяются идеалы и нормы доказательности и обоснования знания. В отличие от классических образцов, обоснование теорий в квантово-релятивистской физике предполагало экспликацию при изложении теории операциональной основы вводимой системы понятий (принцип наблюдаемости) и выяснение связей между новой и предшествующими ей теориями (принцип соответствия).

Новая система познавательных идеалов и норм обеспечивала значительное расширение поля исследуемых объектов, открывая пути к освоению сложных саморегулирующихся систем. В отличие от малых систем такие объекты характеризуются уровневой организацией, наличием относительно автономных и вариабельных подсистем, массовым стохастическим взаимодействием их элементов, существованием управляющего уровня и обратных связей, обеспечивающих целостность системы.

Именно включение таких объектов в процесс научного исследования вызвало резкие перестройки в картинах реальности ведущих областей естествознания. Процессы интеграции этих картин и развитие общенаучной картины мира стали осуществляться на базе представлений о природе как сложной динамической системе. Этому способствовало открытие специфики законов микро-, макро- и мега-мира в физике и космологии, интенсивное исследование механизмов наследственности в тесной связи с изучением надорганизменных уровней организации жизни, обнаружение кибернетикой общих законов управления и обратной связи. Тем самым создавались предпосылки для построения целостной картины природы, в которой прослеживалась иерархическая организованность Вселенной как сложного динамического единства. Картины реальности, вырабатываемые в отдельных науках, на этом этапе еще сохраняли свою самостоятельность, но каждая из них участвовала в формировании представлений, которые затем включались в общенаучную картину мира. Последняя, в свою очередь, рассматривалась не как точный и окончательный портрет природы, а как постоянно уточняемая и развивающаяся система относительно истинного знания о мире.

Все эти радикальные сдвиги в представлениях о мире и процедурах его исследования сопровождались формированием новых философских оснований науки.

Идея исторической изменчивости научного знания, относительной истинности вырабатываемых в науке онтологических принципов соединялась с новыми представлениями об активности субъекта познания. Он рассматривался уже не как дистанцированный от изучаемого мира, а как находящийся внутри него, детерминированный им. Возникает понимание того обстоятельства, что ответы природы на наши вопросы определяются не только устройством самой природы, но и способом нашей постановки вопросов, который зависит от исторического развития средств и методов познавательной деятельности. На этой основе вырастало новое понимание категорий истины, объективности, факта, теории, объяснения и т.п.

Радикально видоизменялась и "онтологическая подсистема" философских оснований науки. Развитие квантово-релятивистской физики, биологии и кибернетики было связано с включением новых смыслов в категории части и целого, причинности, случайности и необходимости, вещи, процесса, состояния и др. В принципе можно показать, что эта "категориальная сетка" вводила новый образ объекта, который представал как сложная система. Представления о соотношении части и целого применительно к таким системам включают идеи несводимости состояний целого к сумме состояний его частей. Важную роль при описании динамики системы начинают играть категории случайности, потенциально возможного и действительного. Причинность не может быть сведена только к ее лапласовской формулировке - возникает понятие "вероятностной причинности", которое расширяет смысл традиционного понимания данной категории. Новым содержанием наполняется категория объекта: он рассматривается уже не как себетождественная вещь (тело), а как процесс, воспроизводящий некоторые устойчивые состояния и изменчивый в ряде других характеристик.

Все описанные перестройки оснований науки, характеризовавшие глобальные революции в естествознании, были вызваны не только его экспансией в новые предметные области и обнаружением новых типов объектов, но и изменениями места и функций науки в общественной жизни.

Основания естествознания в эпоху его становления (первая революция) складывались в контексте рационалистического мировоззрения ранних буржуазных революций, формирования нового (по сравнению с идеологией средневековья) понимания отношений человека к природе, новых представлений о предназначении познания, истинности знаний и т.п.

Становление оснований дисциплинарного естествознания конца XVII I - первой половины XIX в. происходило на фоне резко усиливающейся производительной роли науки, превращения научных знаний в особый продукт, имеющий товарную цену и приносящий прибыль при его производственном потреблении. В этот период начинает формироваться система прикладных и инженерно-технических наук как посредника между фундаментальными знаниями и производством. Различные сферы научной деятельности специализируются и складываются соответствующие этой специализации научные сообщества.

Переход от классического к неклассическому естествознанию был подготовлен изменением структур духовного производства в европейской культуре второй половины XIX - начала XX в., кризисом мировоззренческих установок классического рационализма, формированием в различных сферах духовной культуры нового понимания рациональности, когда сознание, постигающее действительность, постоянно наталкивается на ситуации своей погруженности в саму эту действительность, ощущая свою зависимость от социальных обстоятельств, которые во многом определяют установки познания, его ценностные и целевые ориентации.

В современную эпоху, в последнюю треть нашего столетия мы являемся свидетелями новых радикальных изменений в основаниях науки. Эти изменения можно охарактеризовать как четвертую глобальную научную революцию, в ходе которой рождается новая постнеклассическая наука.

Интенсивное применение научных знаний практически во всех сферах социальной жизни, изменение самого характера научной деятельности, связанное с революцией в средствах хранения и получения знаний (компьютеризация науки, появление сложных и дорогостоящих приборных комплексов, которые обслуживают исследовательские коллективы и функционируют аналогично средствам промышленного производства и т.д.) меняет характер научной деятельности. Наряду с дисциплинарными исследованиями на передний план все более выдвигаются междисциплинарные и проблемно-ориентированные формы исследовательской деятельности. Если классическая наука была ориентирована на постижение все более сужающегося, изолированного фрагмента действительности, выступавшего в качестве предмета той или иной научной дисциплины, то специфику современной науки конца XX века определяют комплексные исследовательские программы, в которых принимают участие специалисты различных областей знания. Организация таких исследований во многом зависит от определения приоритетных направлений, их финансирования, подготовки кадров и др. В самом же процессе определения научно-исследовательских приоритетов наряду с собственно познавательными целями все большую роль начинают играть цели экономического и социально-политического характера.

Реализация комплексных программ порождает особую ситуацию сращивания в единой системе деятельности теоретических и экспериментальных исследований, прикладных и фундаментальных знаний, интенсификации прямых и обратных связей между ними. В результате усиливаются процессы взаимодействия принципов и представлений картин реальности, формирующихся в различных науках. Все чаще изменения этих картин протекают не столько под влиянием внутридисциплинарных факторов, сколько путем "парадигмальной прививки" идей, транслируемых из других наук. В этом процессе постепенно стираются жесткие разграничительные линии между картинами реальности, определяющими видение предмета той или иной науки. Они становятся взаимозависимыми и предстают в качестве фрагментов целостной общенаучной картины мира.

На ее развитие оказывают влияние не только достижения фундаментальных наук, но и результаты междисциплинарных прикладных исследований. В этой связи уместно, например, напомнить, что идеи синергетики, вызывающие переворот в системе наших представлений о природе, возникали и разрабатывались в ходе многочисленных прикладных исследований, выявивших эффекты фазовых переходов и образования диссипативных структур (структуры в жидкостях, химические волны, лазерные пучки, неустойчивости плазмы, явления выхлопа и флаттера).

В междисциплинарных исследованиях наука, как правило, сталкивается с такими сложными системными объектами, которые в отдельных дисциплинах зачастую изучаются лишь фрагментарно, поэтому эффекты их системности могут быть вообще не обнаружены при узкодисциплинарном подходе, а выявляются только при синтезе фундаментальных и прикладных задач в проблемно-ориентированном поиске.

Объектами современных междисциплинарных исследований все чаще становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Такого типа объекты постепенно начинают определять и характер предметных областей основных фундаментальных наук, детерминируя облик современной, постнеклассической науки.

Исторически развивающиеся системы представляют собой более сложный тип объекта даже по сравнению с саморегулирующимися системами. Последние выступают особым состоянием динамики исторического объекта, своеобразным срезом, устойчивой стадией его эволюции. Сама же историческая эволюция характеризуется переходом от одной относительно устойчивой системы к другой системе с новой уровневой организацией элементов и саморегуляцией. Исторически развивающаяся система формирует с течением времени все новые уровни своей организации, причем возникновение каждого нового уровня оказывает воздействие на ранее сформировавшиеся, меняя связи и композицию их элементов. Формирование каждого такого уровня сопровождается прохождением системы через состояния неустойчивости (точки бифуркации), и в эти моменты небольшие случайные воздействия могут привести к появлению новых структур. Деятельность с такими системами требует принципиально новых стратегий. Их преобразование уже не может осуществляться только за счет увеличения энергетического и силового воздействия на систему. Простое силовое давление часто приводит к тому, что система просто-напросто "сбивается" к прежним структурам, потенциально заложенным в определенных уровнях ее организации, но при этом может не возникнуть принципиально новых структур. Чтобы вызвать их к жизни, необходим особый способ действия: в точках бифуркации иногда достаточно небольшого энергетического "воздействия-укола" в нужном пространственно-временном локусе, чтобы система перестроилась и возник новый уровень организации с новыми структурами. Саморазвивающиеся системы характеризуются синергетическими эффектами, принципиальной необратимостью процессов. Взаимодействие с ними человека протекает таким образом, что само человеческое действие не является чем-то внешним, а как бы включается в систему, видоизменяя каждый раз поле ее возможных состояний. Включаясь во взаимодействие, человек уже имеет дело не с жесткими предметами и свойствами, а со своеобразными "созвездиями возможностей". Перед ним в процессе деятельности каждый раз возникает проблема выбора некоторой линии развития из множества возможных путей эволюции системы. Причем сам этот выбор необратим и чаще всего не может быть однозначно просчитан.

В естествознании первыми фундаментальными науками, столкнувшимися с необходимостью учитывать особенности исторически развивающихся систем, были биология, астрономия и науки о Земле. В них сформировались картины реальности, включающие идею историзма и представления об уникальных развивающихся объектах (биосфера, Метагалактика, Земля как система взаимодействия геологических, биологических и техногенных процессов). В последние десятилетия на этот путь вступила физика. Представление об исторической эволюции физических объектов постепенно входит в картину физической реальности, с одной стороны, через развитие современной космологии (идея "Большого взрыва" и становления различных видов физических объектов в процессе исторического развития Метагалактики), а с другой - благодаря разработке идей термодинамики неравновесных процессов (И. Пригожин) и синергетики.

Именно идеи эволюции и историзма становятся основой того синтеза картин реальности, вырабатываемых в фундаментальных науках, которые сплавляют их в целостную картину исторического развития природы и человека и делают лишь относительно самостоятельными фрагментами общенаучной картины мира, пронизанной идеями глобального эволюционизма.

Ориентация современной науки на исследование сложных исторически развивающихся систем существенно перестраивает идеалы и нормы исследовательской деятельности. Историчность системного комплексного объекта и вариабельность его поведения предполагают широкое применение особых способов описания и предсказания его состояний - построение сценариев возможных линий развития системы в точках бифуркации. С идеалом строения теории как аксиоматически-дедуктивной системы все больше конкурируют теоретические описания, основанные на применении метода аппроксимации, теоретические схемы, использующие компьютерные программы, и т.д. В естествознание начинает все шире внедряться идеал исторической реконструкции, которая выступает особым типом теоретического знания, ранее применявшимся преимущественно в гуманитарных науках (истории, археологии, историческом языкознании и т.д.).

Образцы исторических реконструкций можно обнаружить не только в дисциплинах, традиционно изучающих эволюционные объекты (биология, геология), но и в современной космологии и астрофизике: современные модели, описывающие развитие Метагалактики, могут быть расценены как исторические реконструкции, посредством которых воспроизводятся основные этапы эволюции этого уникального исторически развивающегося объекта.

Изменяются представления и о стратегиях эмпирического исследования. Идеал воспроизводимости эксперимента применительно к развивающимся системам должен пониматься в особом смысле. Если эти системы типологизируются, т.е. если можно проэкспериментировать над многими образцами, каждый из которых может быть выделен в качестве одного и того же начального состояния, то эксперимент даст один и тот же результат с учетом вероятностных линий эволюции системы.

Но кроме развивающихся систем, которые образуют определенные классы объектов, существуют еще и уникальные исторически развивающиеся системы. Эксперимент, основанный на энергетическом и силовом взаимодействии с такой системой, в принципе не позволит воспроизводить ее в одном и том же начальном состоянии. Сам акт первичного "приготовления" этого состояния меняет систему, направляя ее в новое русло развития, а необратимость процессов развития не позволяет вновь воссоздать начальное состояние. Поэтому для уникальных развивающихся систем требуется особая стратегия экспериментального исследования. Их эмпирический анализ осуществляется чаще всего методом вычислительного эксперимента на ЭВМ, что позволяет выявить разнообразие возможных структур, которые способна породить система.

Среди исторически развивающихся систем современной науки особое место занимают природные комплексы, в которые включен в качестве компонента сам человек. Примерами таких "человекоразмерных" комплексов могут служить медико-биологические объекты, объекты экологии, включая биосферу в целом (глобальная экология), объекты биотехнологии (в первую очередь генетической инженерии), системы "человек - машина" (включая сложные информационные комплексы и системы искусственного интеллекта) и т.д.

При изучении "человекоразмерных" объектов поиск истины оказывается связанным с определением стратегии и возможных направлений преобразования такого объекта, что непосредственно затрагивает гуманистические ценности. С системами такого типа нельзя свободно экспериментировать. В процессе их исследования и практического освоения особую роль начинает играть знание запретов на некоторые стратегии взаимодействия, потенциально содержащие в себе катастрофические последствия.

В этой связи трансформируется идеал ценностно нейтрального исследования. Объективно истинное объяснение и описание применительно к "человекоразмерным" объектам не только допускает, но и предполагает включение аксиологических факторов в состав объясняющих положений. Возникает необходимость экспликации связей фундаментальных внутринаучных ценностей (поиск истины, рост знаний) с вненаучными ценностями общесоциального характера. В современных программно-ориентированных исследованиях эта экспликация осуществляется при социальной экспертизе программ. Вместе с тем в ходе самой исследовательской деятельности с человекоразмерными объектами исследователю приходится решать ряд проблем этического характера, определяя границы возможного вмешательства в объект. Внутренняя этика науки, стимулирующая поиск истины и ориентацию на приращение нового знания, постоянно соотносится в этих условиях с общегуманистическими принципами и ценностями. Развитие всех этих новых методологических установок и представлений об исследуемых объектах приводит к существенной модернизации философских оснований науки.

Научное познание начинает рассматриваться в контексте социальных условий его бытия и его социальных последствий, как особая часть жизни общества, детерминируемая на каждом этапе своего развития общим состоянием культуры данной исторической эпохи, ее ценностными ориентациями и мировоззренческими установками. Осмысливается историческая изменчивость не только онтологических постулатов, но и самих идеалов и норм познания. Соответственно развивается и обогащается содержание категорий "теория", "метод", "факт", "обоснование", "объяснение" и т.п.

В онтологической составляющей философских оснований науки начинает доминировать "категориальная матрица", обеспечивающая понимание и познание развивающихся объектов. Возникают новые понимания категорий пространства и времени (учет исторического времени системы, иерархии пространственно-временных форм), категорий возможности и действительности (идея множества потенциально возможных линий развития в точках бифуркации), категории детерминации (предшествующая история определяет избирательное реагирование системы на внешние воздействия) и др.

Исторические типы научной рациональности

Три крупных стадии исторического развития науки, каждую из которых открывает глобальная научная революция, можно охарактеризовать как три исторических типа научной рациональности, сменявшие друг друга в истории техногенной цивилизации. Это - классическая рациональность (соответствующая классической науке в двух ее состояниях - додисциплинарном и дисциплинарно организованном); неклассическая рациональность (соответствующая неклассической науке) и постнеклассическая рациональность. Между ними, как этапами развития науки, существуют своеобразные "перекрытия", причем появление каждого нового типа рациональности не отбрасывало предшествующего, а только ограничивало сферу его действия, определяя его применимость только к определенным типам проблем и задач.

Каждый этап характеризуется особым состоянием научной деятельности, направленной на постоянный рост объективно-истинного знания. Если схематично представить эту деятельность как отношения "субъектсредстваобъект" (включая в понимание субъекта ценностноцелевые структуры деятельности, знания и навыки применения методов и средств), то описанные этапы эволюции науки, выступающие в качестве разных типов научной рациональности, характеризуются различной глубиной рефлексии по отношению к самой научной деятельности.

Классический тип научной рациональности, центрируя внимание на объекте, стремится при теоретическом объяснении и описании элиминировать все, что относится к субъекту, средствам и операциям его деятельности. Такая элиминация рассматривается как необходимое условие получения объективно-истинного знания о мире. Цели и ценности науки, определяющие стратегии исследования и способы фрагментации мира, на этом этапе, как и на всех остальных, детерминированы доминирующими в культуре мировоззренческими установками и ценностными ориентациями. Но классическая наука не осмысливает этих детерминаций.

Схематично этот тип научной деятельности может быть представлен следующим образом:


Неклассический тип научной рациональности учитывает связи между знаниями об объекте и характером средств и операций деятельности. Экспликация этих связей рассматривается в качестве условий объективно-истинного описания и объяснения мира. Но связи между внутринаучными и социальными ценностями и целями по-прежнему не являются предметом научной рефлексии, хотя имплицитно они определяют характер знаний (определяют, что именно и каким способом мы выделяем и осмысливаем в мире).

Этот тип научной деятельности можно схематично изобразить в следующем виде:


Постнеклассический тип рациональности расширяет поле рефлексии над деятельностью. Он учитывает соотнесенность получаемых знаний об объекте не только с особенностью средств и операций деятельности, но и с ценностно-целевыми структурами. Причем эксплицируется связь внутринаучных целей с вненаучными, социальными ценностями и целями.

Этот тип научного познания можно изобразить посредством следующей схемы:


Каждый новый тип научной рациональности характеризуется особыми, свойственными ему основаниями науки, которые позволяют выделить в мире и исследовать соответствующие типы системных объектов (простые, сложные, саморазвивающиеся системы). При этом возникновение нового типа рациональности и нового образа науки не следует понимать упрощенно в том смысле, что каждый новый этап приводит к полному исчезновению представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность. Неклассическая наука вовсе не уничтожила классическую рациональность, а только ограничила сферу ее действия. При решении ряда задач неклассические представления о мире и познании оказывались избыточными, и исследователь мог ориентироваться на традиционно классические образцы (например, при решении ряда задач небесной механики не требовалось привлекать нормы квантово-релятивистского описания, а достаточно было ограничиться классическими нормативами исследования). Точно так же становление постнеклассической науки не приводит к уничтожению всех представлений и познавательных установок неклассического и классического исследования. Они будут использоваться в некоторых познавательных ситуациях, но только утратят статус доминирующих и определяющих облик науки.

Когда современная наука на переднем крае своего поиска поставила в центр исследований уникальные, исторически развивающиеся системы, в которые в качестве особого компонента включен сам человек, то требование экспликации ценностей в этой ситуации не только не противоречит традиционной установке на получение объективно-истинных знаний о мире, но и выступает предпосылкой реализации этой установки. Есть все основания полагать, что по мере развития современной науки эти процессы будут усиливаться. Техногенная цивилизация ныне вступает в полосу особого типа прогресса, когда гуманистические ориентиры становятся исходными в определении стратегий научного поиска.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1. Ключевые понятия

2. Понятие науки. Закономерности развития науки

3. Научные и философская картины мира. Научные революции и смена типов рациональности

4. Основные направления «философии науки»

5. Научное познание: особенности, структура, методы и формы

6. Наука и техника. Философия техники

1. Ключевые понятия

Абстракция - результат процесса абстрагирования, т.е. отвлечения, мысленного выделения какой-либо стороны, аспекта и отбрасывания всего того, что мешает целенаправленному рассмотрению элемента (объекта) исследования. философский наука мировоззренческий позитивизм

Гипотеза - научное предположение, выдвигаемое для объяснения какого-либо явления. В отличие от аксиомы гипотеза должна для своего признания получить опытную проверку.

Наука - сфера познавательной деятельности людей, поиск новых знаний о мире, приведенная в логически непротиворечивую систему сумма знаний на основе выработки научных понятий и научных теорий, формулировки законов, принципов, позволяющих делать верное описание, объяснение и предсказание процессов и явлений действительности.

Научная картина мира - интегративная система представлений о мире, вырабатываемая внутри науки путем обобщения и синтеза важнейших теоретических знаний о мире, полученных на том или ином этапе исторического развития науки. Научная картина мира влияет на формирование мировоззренческих смыслов обыденного мышления, от которых зависит динамика общественной жизни. Но мировоззрение, в свою очередь, влияет на содержание Научная картина мира как непосредственно, так и опосредованно (через философию).

Научная рациональность - понятие классической рационалистической философии, выражающее способность мышления создавать особый мир идеальных объектов и превращать его в специальный предмет деятельности. Идеальные объекты научной рациональности, в отличие от вымышленных фантазией, можно объективировать, т.е. претворять в практически сделанную вещь и контролируемо воспроизводить бесконечное число раз в эксперименте. Научная рациональность полагает предел свободе интерпретации мира, соотнося познание только с логико-методологическими нормами и эмансипируя познавательный акт от любых ценностных ориентации сознания. Руководствуясь принципом тождества мышления и бытия, а также критериями доказательности и обоснованности, научная рациональность претендует на постижение истины.

Аксиома - исходное положение научной теории, принимаемое в качестве истинного без логического доказательства и лежащее в основе доказательства других положений этой теории.

Дифференциация - сторона процесса развития связанная с разделением, расчленением развивающегося целого на части, ступени, уровни.

Идеализация - мысленное конструирование понятий об объектах, не существующих и не осуществимых в действительного, но таких, для которых имеются прообразы в реальном мире. Результатом идеализации является идеализированный объект.

Интеграция - сторона процесса развития с объединением в целое разнообразных частей и элементов.

Метод - совокупность приемов и операции практического и теоретического освоения действительности.

Рациональный - относящийся к разуму, установленное и обоснованное разумом, проистекающее из него.

2 . Понятие науки. Закономерности развития науки

Наука - это форма духовной деятельности людей, направленная на производство знаний о природе, обществе и самом познании, имеющая непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов в их взаимосвязи для того, чтобы предвидеть тенденции развития действительности и способствовать ее изменению.

Наука - это творческая деятельность по получению нового знания, и результат этой деятельности: совокупность знаний, в понятийной форме приведенных в целостную систему на основе определенных принципов, и процесс их производства. Собрание сумма разрозненных, хаотических сведений не есть научное знание. Как и другие формы познания, наука есть социокультурная деятельность, а не только "чистое знание", своеобразный социальный институт.

Наука образует единую, взаимосвязанную, развивающуюся систему знаний о его законах. Эта система разделяется на множество отраслей знания (частных наук), которые различаются между собой тем, какую сторону действительности, форму движения материи они изучают. По предмету и методу познания можно выделить науки о природе - естествознание, и обществе - обществознание (гуманитарные, социальные науки), о познании, мышлении (логика, гносеология и др.). Отдельную группу составляют технические науки. Очень своеобразной наукой является современная математика. В свою очередь каждая группа наук может быть подвергнута более подробному членению. Так в состав естественных наук входят механика, физика, химия, геология, биология и др., каждая из которых подразделяется на целый ряд отдельных научных дисциплин. Наукой о наиболее общих законах действительности является философия, которую нельзя, однако, полностью относить только к науке.

Могут быть и другие критерии для классификации наук. Так, по своей удаленности от практики науки можно разделить на два крупных типа:

фундаментальные, которые выясняют основные законы и принципы реального мира и где нет прямой ориентации на практику, и прикладные - непосредственное применение результатов научного познания для решения конкретных производственных и социально - практических проблем, с опорой на закономерности, установленные фундаментальными науками. Вместе с тем границы между отдельными науками и научными дисциплинами условны и неподвижны. Тем более, что все чаще происходит соединение научных знаний в форме так называемых «стыковых дисциплин» - физическая химия, биофизика, геохимия и т. п.

Каждая наука и научная дисциплина включают в себя 4 необходимых компонента в их единстве:

а) Субъект науки, ученый - главный элемент. Это и отдельный исследователь, научное сообщество, научный коллектив и - в конечном итоге -общество в целом.

б) Объект (предмет, предметная область), т.е. то, что именно изучает данная наука или научная дисциплина.

в) Система методов и приемов, характерных для последних и обусловленных их предметами.

г) Свой своеобразный язык - естественный или искусственный (знаки, символы, математические уравнения, химические формулы и т.п.).

Научное познание есть целостная развивающаяся система, имеющая довольно сложную структуру. Она выражает собой единство устойчивых взаимосвязей между элементами данной системы. Структура научного познания может быть представлена в различных ее «срезах» и соответственно - в совокупности специфических своих элементов:

1) фактический материал, почерпнутый из эмпирического опыта; 2) результаты его первоначального обобщения в понятиях и других абстракциях; 3) основанные на фактах проблемы и научные предположения (гипотезы); 4) «вырастающие» из них законы, принципы и теории (альтернативные в том числе); 5) философские установки; 6) методы, идеалы и нормы научного познания; 7) социокультурные основания; 8) стиль мышления.

Научное познание - развивающаяся система знания, которая включает в себя два основных взаимосвязанных, но качественно различных уровня - эмпирический и теоретический.

На эмпирическом уровне преобладает живое созерцание (чувственное познание), рациональный момент и его формы здесь присутствуют, но имеют подчиненное значение.

Теоретический уровень научного познания характеризуется преобладанием рационального момента - понятий, теорий, законов и других форм «мыслительных действий». Живое созерцание здесь не устраняется, а становится подчиненным (но очень важным) аспектом познавательного процесса.

Основными компонентами, в которых выражается структура теоретического познания являются проблема, гипотеза и теория.

Проблема - форма знания, содержанием которой является то, что еще не познано человеком, но что нужно познать.

Гипотеза - форма знания, содержащая предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотетическое знание носит вероятностный, а не достоверный характер, и требует проверки, обоснования.

Теория - наиболее развитая форма научного знания, дающая целостное отображение закономерных и существенных связей определенной области действительности (подробнее о теории см. ниже).

Любая научная теория - это органическая развивающаяся система истинного знания (включающая и элементы заблуждения), которая имеет сложную структуру и выполняет ряд функций.

В современной методологии науки выделяют следующие основные элементы теории: 1) Исходные основания - фундаментальные первичные понятия, принципы, законы, постулаты, аксиомы и т.п.

2) Идеализированный объект данной теории - абстрактная модель существенных свойств и связей изучаемых предметов (например, «абсолютно черное тело», «идеальный газ» и т.п.).

3) Логика теории, нацеленная на прояснение структуры и развития знания, содержащая определенные правила вывода и способы доказательства.

4) Совокупность законов и утверждений, логически выведенных из основоположений данной теории в соответствии с определенными принципами. Ключевой момент теории - закон, поэтому ее можно рассматривать как систему законов, выражающих сущность изучаемого объекта во всей его целостности и конкретности.

5) Философско-методологические установки и ценностные факторы.

К числу основных функций теории можно отнести следующие:

1. Синтетическая - объединение отдельных достоверных знаний в единую, развивающуюся, целостною систему.

2. Объяснительная - выявление причинных и иных связей данного явления, его существенных характеристик, законов его происхождения и развития.

3. Методологическая - разработка на базе теории многообразных методов, способов и приемов исследовательской деятельности.

4. Предсказательная (функция предвидения) - формулировка представлений о существовании неизвестных ранее фактов, объектов и их свойств, или о тех, существование которых известно, но они пока еще не выявлены.

5. Практическая - быть в конечном счете воплощенной в практику, стать «руководством к действию» по изменению реальной действительности.

Исторически понимание «науки» меняется, так, а античности «наука» понималась как составная часть деятельности, направленной на достижение какой-то цели, это как бы «теория» деятельности.

Наукой владеет знаток своего дела, он знает, как надо делать и почему надо так поступать. Аристотель выделял три вида наук:

1. теоретические, умозрительные, высшие науки, которые познают свой предмет с помощью разума (философия, физика, математика);

2. практические науки (изучают начала государства: политика, этика, экономика);

3. творческие, ремесленные, низшие науки, которые изучают искусственные вещи: строительство, медицина, военное дело, поварское искусство и т.п.

Со времени возникновения науки и до начала XVII в. основой целью науки была выработка общего представления о мире и месте в нем человека. Знания для древнего грека ценны орудия изменения духовного мира человека, а не потому что с их помощью можно делать нужные вещи. Такое отношение к знаниям разрабатывается у греческих философов Сократа, Платона, Аристотеля.

В средневековье наука становится служанкой богословия, она преклоняется перед авторитетами и догматами. Начиная с эпохи Возрождения появляется тенденция к опытному изучению природы. В XVII в. наука становится фактором производственного процесса, который в свою очередь, становится сферой приложения науки. Наука приобретает ряд черт, роднящих её с материальным производством.

В конце XVIII в. в процессе продолжающегося процесса дифференциации наук началось отпочкование прикладного знания от теоретического. К середине XIX в. процесс односторонней дифференциации в основном исчерпал себя. Доминирующей тенденцией становится тенденция к интеграции наук. В XX в. наука становится непосредственной производительной силой в ходе научно - технической революции появляется все больше признаков поворота науки в сторону человека. Автоматизация приводит к тому, что человек осуществляет контроль над функционированием машин.

Развитие науки в XX в. привело к изменению отношения значительной части ученых к проблеме «наука и этика». Перед учеными остро встали вопросы о характере использования открытий науки, о моральной ответственности ученых перед человечеством. Прогресс кибернетики и вычислительной техники, широкое внедрение роботов и компьютеров ставят вопрос о свободе и суверенности личности, о судьбе демократических общественных институтов. И наука рассматривается как деятельность по производству объективно-истинного знания и результат этой деятельности - систематизированное, достоверное, практически проверенное знание.

Наука - попытка увидеть мир, каким он является сам по себе, дать объективную картину реальности.

Сущность науки:

· достоверное обобщение фактов, истинное отражение исследуемых процессов, объективность;

· выявление законов, управляющих процессами в объекте исследования;

· предвидение тенденций развития и функционирования объекта;

· контроль и управление процессами в объекте.

Жизненный смысл науки: знать, чтобы предвидеть, предвидеть, чтобы действовать.

В XX в. научная деятельность институциализирована, приобрела устойчивые социальные формы, организована.

Как вид деятельности наука характеризуется:

1. определенной системой ценностей: ценности истины, ценность разума, ценность нового знания; ценность независимости суждений и готовности признать свои ошибки;

2. определенным набором технических устройств, аппаратуры, средств, используемых в научной деятельности;

3. совокупностью методов, используемых для получения нового знания;

4. способом организации научной деятельности.

Наука - сложный социальный институт, включает три составляющих:

1. производство нового знания;

2. доведение знаний до их практического использования;

3. подготовка научных кадров.

Научные исследования включают:

· использование методов научного исследования; установление фактов, результатов наблюдений и экспериментов;

· обобщение и объяснение фактов, построение гипотез и их проверка;

· установление закономерных связей между фактами;

· построение теории, законов, принципов;

· философское истолкование данных науки;

· накопление новых опытных данных;

· коррекция, пересмотр прежних теоретических представлений.

Важнейшими закономерностями развития науки являются:

1. обусловленность развития науки потребностями общественно-исторической практики;

2. относительная самостоятельность развития науки;

3. преемственность в развитии идей и принципов, теорий и понятий, методов и приемов науки;

4. постепенность развития науки, чередование периодов эволюционного развития и революционной ломки теоретических основ науки;

5. взаимодействие и взаимосвязь всех составных отраслей науки;

6. свобода критики, свободное столкновение различных мнений, научных гипотез;

7. дифференциация и интеграция научного знания;

8. математизация науки.

Современная наука не только обслуживает запросы производства, но и выступает в качестве предпосылки технической революции, развития производительных сил общества. Объем научной деятельности и продукции в XX в. удваивается каждые 5-10 лет.

По предмету исследования науки делятся на две группы: естественные и общественные (социальные).

По функции, целевому назначению выделяются: фундаментальные науки и прикладные науки (технические).

По методу исследования выделяют: теоретические науки и эмпирические науки.

3 . Научные и философская картины мира. Научные революции и смена типов рациональности

Картина мира - это «образ мира», отражающий закономерности природы, совокупность создаваемых исследователями представлений о объектах внешнего мира, из которых логическим путем можно получить сведения относительно поведения этих объектов.

Картина мира, которая складывается из существующих научных представлений о строении и развитии природы, называется естественнонаучной картиной мира.

Научные картины мира изменяются в процессе развития науки и имеют относительный характер. Научная картина мира представляет собой систему общих представлений о мире, вырабатываемых на соответствующих стадиях исторического развития научного познания.

Философская картина мира представляет собой систему наиболее общих философских понятий (категорий), принципов, концепций, дающую на определенном историческом этапе представление о мире в целом.

Указанные картины мира не существуют изолированно, в отрыве друг от друга. Философская картина мира опирается на положения естествознания, подтверждающие и конкретизирующие ее положения и выводы. В свою очередь, естественнонаучная картина мира обязательно связана с теми или иными философскими представлениями, свойственными той или иной эпохе.

История научного познания сопровождалась периодической сменой картин мира, сменой парадигм. Парадигма - определенная совокупность общепринятых в научном сообществе на данном историческом этапе идей, понятий, теорий, а также методов научного исследования. Научные революции сопровождались сменой парадигм.

Научные революции - это переломные этапы в развитии научного знания, решающие этапы в прогрессивном развитии знаний, радикально меняющие прежнее видение мира.

Научные революции - не кратковременные события, а представляют собой более или менее длительный исторический период, поскольку коренные изменения в научных знаниях требуют определенного времени.

Глобальная научная революция приводит к формированию совершенно нового видения мира, вызывает появление принципиально новых представлений о его структуре и функционировании, а также влечет за собой новые способы, методы его познания.

В истории естествознания выделяют четыре глобальные научные революции.

Первая научная революция произошла в период XV-XVI в., в эпоху перехода от средневековья к Новому времени, получившей название Эпохи Возрождения.

Первая научная революция характеризуется сменой космологической картины мира, (переход от аристотелевско-птолемеевской геоцентрической системы мира: «Земля - центр мироздания» к гелиоцентрическому учению астронома Коперника: «Земля - одна из планет, движущихся вокруг Солнца по круговым орбитам). Учение Коперника подрывало опирающуюся на идеи Аристотеля религиозную картину мира.

Вторая научная революция: (XVII в.) - рождение современной науки, нового механистического естествознания, у истоков которого стояли Галилей, Кеплер, Ньютон. Основные особенности:

1. применение метода научного рассуждения, математических расчетов и эксперимента;

2. заложены основы физики, открыты законы движения тел, падения тел, вращение Солнца вокруг своей оси (Галилей), законы движения планет вокруг Солнца, теории солнечных и лунных затмений (Кеплер), теории «вихрей в мировом космическом пространстве», аналитической геометрии {Р. Декарт), создание дифференциального и интегрального исчисления, теории «динамики» - учение о силах и их взаимодействии, законах движения, которые легли в основу механики как науки: закон инерции, закон ускорения тела, закон равенства действия и противодействия, закон всемирного тяготения (И. Ньютон);

3. законы, установленные для механической сферы явлений, переносили на самые различные явления природы;

4. метафизический подход: все объекты изучаются как изолированные друг от друга, без учета их развития и взаимосвязей. Третья научная революция (с конца XVII в. - до конца XIX в.) характеризуется диалектизацией естествознания:

Основные открытия и положения:

1. попытки рассмотреть развитие Солнечной системы - космогоническая гипотеза Канта-Лапласа о происхождении Солнечной системы из газовой туманности;

2. учение об эволюции органического мира Лапласа под влиянием изменения условий окружающей среды; теория Дарвина о законах естественного отбора и эволюции животного мира, происхождения человека; теория клеточного строения растений и животных Шлейдена и Шванна;

3. открытие закона сохранения и превращения энергии: химическая, тепловая и механическая энергии могут превращаться друг в друга и являются равноценными (Майер, Джоуль, Колдинг);

4. вся природа - это непрерывный процесс превращения универсального движения материи из одной формы в другую;

5. открытие периодического закона химических элементов Д. Менделеева: свойства химических элементов изменяются в периодической зависимости от их атомных весов; открытие возможности получения органических веществ путем синтеза из исходных неорганических веществ (Ф. Велер) - законы химии едины для неорганического и органического мира;

6. принципы диалектики: принцип развития и принцип всеобщей взаимосвязи получили естественнонаучное обоснование;

7. разоблачение ошибочности натурфилософских механистических гипотез о наличии теплорода (тепловой жидкости), флогистона (горючей субстанции, «жизненной силы организма», электрических и магнитных жидкостей, мирового эфира;

8. формирование диалектико-материалистической картины мира (Энгельс, Маркс);

9. виды материи: вещество и поля (электромагнитное поле и др.); развитие науки к концу XIX в. заставило отказаться от естественнонаучных подходов в толковании материи (отождествляли материю с атомами) и перейти к философскому ее пониманию;

10. переход от метафизико-механического понимания движения к диалектико-материалистическому пониманию движения (движение как способ существования материи: основные формы движения материи: механическое движение, физическое движение, химическое, биологическое, социальное движение);

11. переход к диалектическому пониманию пространства и времени как форм бытия движущейся материи;

12. диалектический принцип материального единства мира (открыты законы закономерного превращения одних видов материи в другие, одних форм движения в другие).

Четвертая научная революция (XX в.) - формирование квантово-релятивистских представлений о мире. Основные открытия и положения:

1. открытие радиоактивного распада, электронов, позитронов;

2. создание квантовой теории строения атомов (Резенфорда-Бора);

3. создание теории относительности (А. Энштейн), зависимость свойств пространства и времени от движения материи и друг от друга; взаимосвязь закона сохранения массы с законом сохранения энергии - взаимопревращение видов материи и форм движения;

4. открытие волновых свойств материи (Л. Бройль), корпускулярно-волновая двойственность элементарных частиц: распространяются как волны, излучаются и поглощаются как частицы;

5. движение микрочастиц подчиняется законам квантовой механики, законы классической механики непригодны для микромира: положение микрочастицы в пространстве в каждый момент времени не может быть определено, внутриядерные процессы не могут быть объяснены, исходя из законов квантовой механики, так как она не отражает внутренние связи, структуру микрочастиц;

6. открытие сотен микрочастиц: элементарные частицы сами обладают внутренней структурой, состоят из кварков; создание кварковой гипотезы;

7. развитие генетики, расшифровка молекулы ДНК;

8. развитие диалектико-материалистической картины мира.

Глобальные революции и смена типов научной рациональности . В развитии науки можно выделить такие периоды, когда преобразовывались все компоненты ее оснований. Смена научных картин мира сопровождалась коренным изменением нормативных структур исследования, а также философских оснований науки. Эти периоды правомерно рассматривать как глобальные революции, которые могут приводить к изменению типа научной рациональности.

В истории естествознания можно обнаружить четыре таких революции. Первой из них была революция XVII в., ознаменовавшая собой становление классического естествознания.

Его возникновение было неразрывно связано с формированием особой системы идеалов и норм исследования, в которых, с одной стороны, выражались установки классической науки, а с другой - осуществлялась их конкретизация с учетом доминанты механики в системе научного знания данной эпохи.

Через все классическое естествознание начиная с XVII в. проходит идея, согласно которой объективность и предметность научного знания достигается только тогда, когда из описания и объяснения исключается все, что относится к субъекту и процедурам его познавательной деятельности. Эти процедуры принимались как раз навсегда данные и неизменные. Идеалом было построение абсолютно истинной картины природы. Главное внимание уделялось поиску очевидных, наглядных, «вытекающих из опыта» онтологических принципов, на базе которых можно строить теории, объясняющие и предсказывающие опытные факты.

В XVII-XVIII столетии эти идеалы и нормативы исследования сплавлялись с целым рядом конкретизирующих положений, которые выражали установки механического, понимания природы. Объяснение истолковывалось как поиск механических причин и субстанций - носителей сил, которые детерминируют наблюдаемые явления. В понимание обоснования включалась идея редукции знания о природе к фундаментальным принципам и представлениям механики.

В соответствии с этими установками строилась и развивалась механическая картина природы, которая выступала одновременно и как картина реальности, применительно к сфере физического знания, и как общенаучная картина мира.

Наконец, идеалы, нормы и онтологические принципы естествознания XVII-XVIII столетий опирались на специфическую систему философских оснований, в которых доминирующую роль играли идеи механицизма.

Радикальные перемены в этой целостной и относительно устойчивой системе оснований естествознания произошли в конце XVIII - первой половине XIX в. Их можно расценить как вторую глобальную научную революцию, определившую переход к новому состоянию естествознания - дисциплинарно организованной науке.

В это время механическая картина мира утрачивает статус общенаучной. В биологии, химии и других областях знания формируются специфические картины реальности, нередуцируемые к механической.

Одновременно происходит дифференциация дисциплинарных идеалов и норм исследования. Например, в биологии и геологии возникают идеалы эволюционного объяснения, в то время как физика продолжает строить свои знания, абстрагируясь от идеи развития. Но и в ней, с разработкой теории поля, начинают постепенно размываться ранее доминировавшие нормы механического объяснения. Все эти изменения затрагивали главным образом третий слой организации идеалов и норм исследования, выражающий специфику изучаемых объектов. Что же касается общих познавательных установок классической науки, то они еще сохраняются в данный исторический период.

Центральной становится проблема соотношения разнообразных методов науки, синтеза знаний и классификации наук. Выдвижение ее на передний план связано с утратой прежней целостности научной картины мира, а также с появлением специфики нормативных структур в различных областях научного исследования. Поиск путей единства науки, проблема дифференциации и интеграции знания превращаются в одну из фундаментальных философских проблем, сохраняя свою остроту на протяжении всего последующего развития науки.

Первая и вторая глобальные революции в естествознании протекали как формирование и развитие классической науки и ее стиля мышления.

Третья глобальная научная революция была связана с преобразованием этого стиля и становлением нового, неклассического естествознания. Она охватывает период с конца XIX до середины XX столетия. В эту эпоху происходит своеобразная цепная реакция революционных перемен в различных областях знания: в физике (открытие делимости атома, становление релятивистской и квантовой теории), в космологии (концепция нестационарной Вселенной), а химии (квантовая химия), в биологии (становление генетики). Возникает кибернетика и теория систем, сыгравшие важнейшую роль в развитии современной научной картины мира.

В процессе всех этих революционных преобразований формировались идеалы и нормы новой, неклассической науки. Они характеризовались отказом от прямолинейного онтологизма и пониманием относительной истинности теорий и картины природы, выработанной на том или ином этапе развития естествознания. В противовес идеалу единственно истинной теории, «фотографирующей» исследуемые объекты, допускается истинность нескольких отличающихся друг от друга конкретных теоретических описаний одной и той же реальности, поскольку в каждом из них может содержаться момент объективно-истинного знания.

Осмысливаются корреляции между онтологическими постулатами науки и характеристиками метода, посредством которого осваивается объект. В связи с этим принимаются такие типы объяснения и описания, которые в явном виде содержат ссылки на средства и операции познавательной деятельности. Наиболее ярким образцом такого подхода выступали идеалы и нормы объяснения, описания и доказательности знаний, утвердившиеся в квантово-релятивистской физике.

Если в классической физике идеал объяснения и описания предполагал характеристику объекта «самого по себе», без указания на средства его исследования, то в квантово-релятивистской физике в качестве необходимого условия объективности объяснения и описания выдвигается требование четкой фиксации особенностей средств наблюдения, которые взаимодействуют с объектом (классический способ объяснения и описания может быть представлен как идеализация, рациональные моменты которой обобщаются в рамках нового подхода).

Изменяются идеалы и нормы доказательности и обоснования знания. В отличие от классических образцов, обоснование теорий в квантово-релятивистской физике предполагало экспликацию при изложении теории операциональной основы вводимой системы понятий (принцип наблюдаемости) и выяснение связей между новой и предшествующими ей теориями (принцип соответствия).

Переход от классического к неклассическому естествознанию был подготовлен изменением структур духовного производства в европейской культуре второй половины XIX - начала XX в., кризисом мировоззренческих установок классического рационализма, формированием в различных сферах духовной культуры нового понимания рациональности, когда сознание, постигающее действительность, постоянно наталкивается на ситуации своей погруженности в саму эту действительность, ощущая свою зависимость от социальных обстоятельств, которые во многом определяют установки познания, его ценностные и целевые ориентации.

В современную эпоху, в последнюю треть нашего столетия мы являемся свидетелями новых радикальных изменений в основаниях науки. Эти изменения можно охарактеризовать как четвертую глобальную научную революцию, в ходе которой рождается новая постнеклассическая наука.

Интенсивное применение научных знаний практически во всех сферах социальной жизни, изменение самого характера научной деятельности, связанное с революцией в средствах хранения и получения знаний (компьютеризация науки, появление сложных и дорогостоящих приборных комплексов, которые обслуживают исследовательские коллективы и функционируют аналогично средствам промышленного производства и т.д.) меняет характер научной деятельности.

Наряду с дисциплинарными исследованиями на передний план все более выдвигаются междисциплинарные и проблемно-ориентированные формы исследовательской деятельности. Если классическая наука была ориентирована, на постижение все более сужающегося, изолированного фрагмента действительности, выступавшего в качестве предмета той или иной научной дисциплины, то специфику современной науки конца XX века определяют комплексные исследовательские программы, в которых принимают участие специалисты различных областей знания. Организация таких исследований во многом зависит от определения приоритетных направлений, их финансирования, подготовки кадров и др. В процессе определения научно-исследовательских приоритетов наряду с познавательными целями все большую роль начинают играть цели экономического и социально-политического характера.

Реализация комплексных программ порождает особую ситуацию сращивания в единой системе деятельности теоретических и экспериментальных исследований, прикладных и фундаментальных знаний, интенсификации прямых и обратных связей между ними. В результате усиливаются процессы взаимодействия принципов и представлений картин реальности, формирующихся в различных науках. Все чаще изменения этих картин протекают не столько под влиянием внутридисциплинарных факторов, сколько путем «парадигмальной прививки» идей, транслируемых из других наук. В этом процессе постепенно стираются жесткие разграничительные линии между картинами реальности, определяющими видение предмета той или иной науки. Они становятся взаимозависимыми и предстают в качестве фрагментов целостной общенаучной картины мира.

На ее развитие оказывают влияние не только достижения фундаментальных наук, но и результаты междисциплинарных прикладных исследований. В этой связи уместно, например, напомнить, что идеи синергетики, вызывающие переворот в системе наших представлений о природе, возникали и разрабатывались в ходе многочисленных прикладных исследований, выявивших эффекты фазовых переходов и образования диссипативных структур (структуры в жидкостях, химические волны, лазерные пучки, неустойчивости плазмы, явления выхлопа и флаттера).

В междисциплинарных исследованиях наука, как правило, сталкивается с такими сложными системными объектами, которые в отдельных дисциплинах зачастую изучаются лишь фрагментарно, поэтому эффекты их системности могут быть вообще не обнаружены при узкодисциплинарном подходе, а выявляются только при синтезе фундаментальных и прикладных задач в проблемно-ориентированном поиске.

Объектами современных междисциплинарных исследований все чаще становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Такого типа объекты постепенно начинают определять и характер предметных областей основных фундаментальных наук, детерминируя облик современной, постнеклассической науки.

Исторически развивающиеся системы представляют собой более сложный тип объекта даже по сравнению с саморегулирующимися системами. Последние выступают особым состоянием динамики исторического объекта, своеобразным срезом, устойчивой стадией его эволюции. Сама же историческая эволюция характеризуется переходом от одной относительно устойчивой системы к другой системе с новой уровневой организацией элементов и саморегуляцией. Исторически развивающаяся система формирует с течением времени все новые уровни своей организации, причем возникновение каждого нового уровня оказывает воздействие на ранее сформировавшиеся, меняя связи и композицию их элементов.

При изучении «человекоразмерных» объектов поиск истины оказывается связанным с определением стратегии и возможных направлений преобразования такого объекта, что непосредственно затрагивает гуманистические ценности, С системами такого типа нельзя свободно экспериментировать. В процессе их исследования и практического освоения особую роль начинают играть знание запретов на некоторые стратегии взаимодействия, потенциально содержащие в себе катастрофические последствия.

В онтологической составляющей философских оснований науки начинает доминировать «категориальная матрица», обеспечивающая понимание и познание развивающихся объектов. Возникают новые понимания категорий пространства и времени (учет исторического времени системы, иерархии пространственно-временных форм).

Итак, в историческом развитии науки начиная с XVII столетия возникли три типа научной рациональности и соответственно три крупных этапа эволюции науки, сменявшие друг друга в рамках развития техногенной цивилизации: 1) классическая наука (в двух ее состояниях, додисциплинарная и дисциплинарно организованная наука); 2) неклассическая наука; 3) постнеклассическая наука. Между этими этапами существуют своеобразные «перекрытия», причем появление каждого нового этапа не отбрасывало предшествующих достижений, а только очерчивало сферу их действия, их применимость к определенным типам задач.

Каждый этап характеризуется особым состоянием научной деятельности, направленной на постоянный рост объективно-истинного знания. Если схематично представить эту деятельность как отношения «субъект-средства-объект» (включая в понимание субъекта ценностно-целевые структуры деятельности, знания и навыки применения методов и средств), то описанные этапы эволюции науки выступают в качестве разных типов научной рациональности, характеризующихся различной глубиной рефлексии по отношению к самой научной деятельности.

Классический тип научной рациональности, центрируя внимание на объекте, стремится при теоретическим объяснении и описании элиминировать все, что относится к субъекту, средствам и операциям его деятельности. Такая элиминация рассматривается как необходимое условие получения объективно-истинного знания о мире. Цели и ценности науки, определяющие стратегии исследования и способы фрагментации мира, на этом этапе, как и на всех остальных, детерминированы доминирующими в культуре мировоззренческими установками и ценностными ориентациями. Но классическая наука не осмысливает этих детерминаций.

Неклассический тип научной рациональности учитывает связи между знаниями об объекте и характером средств и операций деятельности. Экспликация этих связей рассматривается в качестве условий объективно-истинного описания и объяснения мира. Но связи между внутринаучными и социальными ценностями и целями по-прежнему не являются предметом научной рефлексии, хотя имплицитно они определяют характер знаний (определяют, что именно и каким способом мы выделяем и осмысливаем в мире).

Постнеклассический тип рациональности расширяет поле рефлексии над деятельностью. Он учитывает соотнесенность получаемых знаний об объекте не только с особенностью средств и операции деятельности, но и с ценностно-целевыми структурами. Причем эксплицируется связь внутринаучных целей с вненаучными, социальными ценностями и целями.

Каждый новый тип научной рациональности характеризуется особыми, свойственными ему основаниями науки, которые позволяют выделить в мире и исследовать соответствующие типы системных объектов (простые, сложные, саморазвивающиеся системы). При этом возникновение нового типа рациональности и нового образа науки не следует понимать упрощенно в том смысле, что каждый новый этап приводит к полному исчезновению представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность. Неклассическая наука вовсе не уничтожила классическую рациональность, а только ограничила сферу её действия. При решении ряда задач неклассические представления о мире и познании оказывались избыточными, и исследователь мог ориентироваться на традиционно классические образцы (например, при решении ряда задач небесной механики не требовалось привлекать нормы квантово-релятивистского описания, а достаточно было ограничиться классическими нормативами исследования). Точно так же становление постнеклассической науки не приводит к уничтожению всех представлений и познавательных установок неклассического и классического исследования. Они будут использоваться в некоторых познавательных ситуациях, но только утратят статус доминирующих и определяющих облик науки.

Когда современная наука на переднем крае своего поиска поставила в центр исследования уникальные, исторически развивающиеся системы, в которые в качестве особого компонента включен сам человек, то требование экспликации ценностей в этой ситуации не только не противоречит традиционной установке на получение объективно-истинных знаний о мире, но и выступает предпосылкой реализации этой установки. Есть все основания полагать, что по мере развития современной науки эти процессы будут усиливаться. Техногенная цивилизация ныне вступает в полосу особого типа прогресса, когда гуманистические ориентиры становятся исходными в определении стратегий научного поиска.

4 . Основные направления «философии науки»

В современной философии сформировалась «философия науки», которая изучает особенности научного познания, динамику научного знания и закономерности развития науки. В рамках философии науки выделяется ряд крупных школ:

· неокантианство;

· позитивизм и неопозитивизм;

· критический рационализм;

· философия и методология научного познания.

Неокантианство (кон. XIX в. - нач. XX в.) рассматривает познание не как отражение действительности, а как деятельность по созданию предмета познания вообще, и науки, в частности. Источником научного знания, по мнению неокантианцев, является не структура сознания познающего человека, а логическая структура науки. Конечной целью философии объявляется исследование логических основ точных наук. Логика исследует лишь правильность, закономерность и необходимость знания, но не истинность.

Позитивизм (возник в XIX в., основоположник Огюст Конт) и неопозитивизм (в XX в.) призывают философию отказаться от метафизических абстракций, от неясных, усложненных рассуждений, преобразовать себя в духе требований естественных наук и изучать позитивное знание, то, которое поддается проверке эмпирическими или логико-математическими средствами.

Науки не нуждаются в стоящей над ними метафизической философии, а должны опираться сами на себя. Науки не должны искать причины явлений и отвечать на вопрос «почему?», а лишь описывать «как» протекают явления. Новая философия должна раскрывать связи между отдельными науками, систематизировать частные знания, познавать общие закономерности, создавать систему научного знания, разрабатывать общенаучные методы познания.

Критический рационализм (в XX в. ученые К. Поппер, И. Лакатос, Т. Кун) стал изучать не научные высказывания, а науку как целостную, динамичную, развивающуюся систему. Нельзя отделять эмпирический и теоретический уровень науки. Любое эмпирическое высказывание обусловлено какой-то теорией. Наука как целостное явление требует к себе разносторонних подходов: историко-научного, методологического, логического, психологического и т.п. Научные законы не сводимы к наблюдениям, поэтому опытным путем проверять их истинность не всегда возможно и принцип верификации не подходит для проверки истинности. Поэтому истинным можно считать такое научное высказывание, которое не опровергнуто опытом (принцип фальсификации). Если найдены такие условия, при которых хотя бы некоторые базисные высказывания теории ложны, то данная теория, гипотеза опровержима. Если опытное опровержение гипотезы отсутствует, то гипотеза может считаться истинной или оправданной.

Развитие науки представляется Куном как скачкообразный революционный процесс, сущность которого выражается в смене научных парадигм. На каждом историческом отрезке в рамках сообщества ученых складывается определенная парадигма, и развитие науки в какой-то период идет в рамках данной парадигмы (идет накопление эмпирического материала - период «нормальной науки»). Постепенно возникают причины для сомнения в ясности и обоснованности общепринятых теоретических положений, парадигма расшатывается и наступает кризис исходных понятий в данной парадигме. Таким образом, наука - это постоянный критический пересмотр знаний, это смена парадигм, это революции в изменении стиля мышления, методологии и методике научного исследования.

Если научно-исследовательская программа может теоретически предсказать новые факты, может объяснить больше, чем конкурирующая научная программа, то она вытесняет последнюю из сообщества ученых. История развития науки - это история борьбы и смены конкурирующих исследовательских программ.

В отечественной философии разрабатывается концепция «методологии научного познания» (В. С. Степин, В. С. Швырев, П. Ф. Юдин и др.). Научное познание рассматривается как исторически меняющаяся деятельность, которая детерминирована - характером исследовательских объектов, а также социальными условиями, свойственными исторически определенному этапу развития цивилизации. Современная наука состоит из различных областей знаний, взаимодействующих между собой, и в то же время имеющих относительную самостоятельность. Наука - это сложная самоорганизующаяся система, которая в своем развитии порождает новые относительно автономные подсистемы и новые интегративные связи.

5 . Научное познание: особенности, структура, методы и формы

Научное познание отличается от всех других видов познания использованием специально разработанных методов.

Метод - это способ деятельности, совокупность приемов, применяемых исследователем для получения определенного результата.

Когда речь идет о научных методах, то имеют в виду прежде всего те приемы и способы, которые помогают получить истинное знание.

Лишь благодаря использованию научно обоснованных методов человеческая деятельность может быть эффективной. Бэкон сравнивал метод со светильником, освещающим путнику дорогу в темноте. Он заметил, что даже хромой, идущий по дороге, опередит того, кто идет по бездорожью.

Научный метод должен отвечать определенным критериям научности. Признаком научного метода является его обоснованность. Основательность метода обусловлена глубиной и адекватностью знаний об объекте.

Знание имеет две функции, во-первых, как информация об объекте, а во-вторых, как метод познания. Эта функция знания характерна для любой его формы: понятия, закона, теории.

Наиболее развитой формой знания является теория. Теория - это система основных положений, в которых обобщается опыт, практика и отражаются объективные закономерности окружающего мира.

Обоснование научного метода не может быть полностью выведено из известной теории объекта. Метод в своем проявлении есть не что иное, как деятельность познающего субъекта с объектом. Метод включает в себя такие элементы: объект, субъект, цель познания, средства познания, условия познания, результат познавательной деятельности. Игнорировать эти элементы при научном обосновании метода нельзя.

Теория метода называется методологией. Методология и есть теория познавательной деятельности. Она - теоретическое обоснование методов и форм научного познания.

Все методы научного познания по степени общности и сфере действия разделяются на следующие основные группы:

I. Философские методы, среди которых наиболее древними являются диалектический и метафизический. Но философские методы не исчерпываются двумя названными. К их числу относятся также аналитический (характерный для современной аналитической философии), интуитивистский, феноменологический, герменевтический (понимание) и др. Предпринимаются попытки соединить разные философские методы.

II . Общенаучные подходы и методы исследования, получившие широкое развитие и применение в науке XX в. Они выступают в качестве своеобразной промежуточной методологии между философией и фундаментальными теоретико-методологическими принципами специальных наук. К общенаучным чаще всего относят такие понятия, как информация, модель, структура, функция, элемент, система, оптимальность, вероятность, нестабильность, самоорганизация и др.

На основе общенаучных понятий и концепций формулируются соответствующие методы и принципы познания, которые и обеспечивают опосредованную связь и оптимальное взаимодействие философской методологии со специально-научным знанием и его методами. К числу общенаучных принципов и подходов относятся: системный и структурно-функциональный, кибернетический, вероятностный, моделирование, формализация, синергетический подход и др.

III. Частнонаучные методы, т.е. совокупность способов, принципов познания, исследовательских приемов и процедур, применяемых в той или иной отрасли науки, соответствующей данной основной форме движения материи. Это методы механики, физики, химии, биологии и гуманитарных (социальных) наук.

IV. Дисциплинарные методы, т.е. система приемов, применяемых в той или иной научной дисциплине, входящей в какую-нибудь отрасль науки или возникшей на стыке наук. Каждая фундаментальная наука представляет собой комплекс многих дисциплин, которые имеют свой специфический предмет и свои своеобразные методы исследования.

V. Методы междисциплинарного исследования как совокупность ряда синтетических, интегративных способов (возникших как результат сочетания элементов различных уровней методологии), нацеленных главным образом на стыки научных дисциплин.

Методы научного познания многообразны и отличаются друг от друга. Метод всегда зависит от объекта, на изучение которого он направлен. В зависимости от предметной направленности различают физические, химические, биологические, социальные и др. методы исследования.

В научном познании на эмпирическом и теоретическом уровнях ставятся существенно различные задачи, поэтому и методы будут различаться.

К эмпирическим методам относятся: наблюдение, эксперимент, моделирование.

Наблюдение - целенаправленное, планомерное, систематическое восприятие предметов и явлений окружающей действительности наблюдение ведется всегда в соответствии с определенными познавательными задачами. В знаке оно производится по заранее намеченному плану, осуществляется организованно и систематически, требует достаточного времени.

Эксперимент - сердцевина эмпирического исследования. Латинское слово «экспериментум» буквально означает пробу, опыт. Эксперимент и есть испытания изучаемых явлений в контролируемых и управляемых условиях. Экспериментатор стремится выделить изучаемое явление в чистом виде, с тем, чтобы было как можно меньше препятствий в получении искомой информации. Постановке эксперимента предшествует соответствующая подготовительная работа. Разрабатывается программа эксперимента; если нужно, то изготовляются специальные приборы, измерительная аппаратура.

В отличие от наблюдения эксперимент представляет собой опыт, основанный на вмешательстве исследователя в ход явлений и процессов путем создания условий, позволяющих выделить определенные связи явлений и многократно воспроизводить их.

Составляющими эксперимента являются: экспериментатор; изучаемое явление; приборы. В случае приборов речь идет не о техническом устройстве типа компьютера, микроскопов и телескопов, призванных усилить чувственные и рациональные возможности человека, а о приборах-детекторах, приборах-посредниках, фиксирующих данные эксперимента.

В современных условиях эксперимент чаще всего производится группой исследователей, которые действуют согласованно.

...

Подобные документы

    Методологический аспект проблемы рациональности: демаркация науки и не науки; историческая смена идеалов научной рациональности; единство и различие критериев рациональности в разных науках; перспектива эволюции современной научной рациональности.

    реферат , добавлен 31.03.2009

    Проблематика философии науки, ее особенности в различные исторические эпохи. Критерии научности и научного познания. Научные революции как перестройка основ науки. Сущность современного этапа развития науки. Институциональные формы научной деятельности.

    реферат , добавлен 24.12.2009

    Проблема познания в философии. Понятие и сущность обыденного познания. Рациональность обыденного познания: здравый смысл и рассудок. Научное познание его структура и особенности. Методы и формы научного познания. Основные критерии научного познания.

    реферат , добавлен 15.06.2017

    Роль и место религии в жизни современного общества. Феномен философской веры в учении К. Ясперса. Общие и отличительные черты между философией и религией. Принципиальные особенности религиозного миропонимания. Новые научные методы построения картины мира.

    статья , добавлен 29.07.2013

    Факты развития научного мировоззрения, формирование научной картины мира. Социальные функции современной науки. Наука как основа, инструмент и метод управления и прогнозирования общественного развития. Гносеологическая схема религиозного познания.

    реферат , добавлен 12.11.2010

    Исторические формы отношения человека к природе. Составные элементы окружающей среды. Экологическая философия, философские концепции биоэтики и экогуманизма. Исторические типы познания. Соотношение философской, религиозной и научной картины мира.

    реферат , добавлен 28.01.2010

    Характеристика специфических форм знания, основные этапы развития позитивизма. Проблема происхождения человека, особенности его биосоциальной природы. Культура разумного мышления, которую несет с собой философия. Принципы сенсуализма и рационализма.

    контрольная работа , добавлен 07.05.2011

    Анализ взглядов Имре Лакатоса - венгерского философа и методолога науки, яркого представителя "критического рационализма". Фальсификационизм как методологическая основа теории научной рациональности. Методология исследовательских программ Имре Лакатоса.

    реферат , добавлен 08.03.2015

    Предмет философии, ее проблемы, структура, функции и мирвоззренческий потенциал. Специфика философской картины мира. Принципы диалектики, ее законы, категории и смысл. Исторические типы и перспективы философской мысли, особенности ее развития в России.

    учебное пособие , добавлен 14.05.2009

    Концепция бытия как фундамент философской картины мира. Историческое осознание категории бытие (от Античности до современности). Понятие материи в системе категорий диалектического материализма, ее структура и свойства. Единство физической картины мира.

Научные революции - это те этапы развития науки, когда происходит смена исследовательских стратегий, за­даваемых ее основаниями. Основания науки включают не­сколько компонентов. Главные среди них: идеалы и мето­ды исследования (представления о целях научной деятельности и способах их достижения); научная карти­на мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующаяся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели, методы, нормы и иде­алы научного исследования.

Например, в классической науке XVII-XVIII вв. иде­алом было получение абсолютно истинных знаний о при­роде; метод познания сводился к поиску механических причин, детерминирующих наблюдаемые явления; науч­ная картина мира носила механический характер, так как любое знание о природе и человеке редуцировалось к фун­даментальным законам механики; классическая наука на­ходила свое обоснование в идеях и принципах материалис­тической философии, которая рассматривала познание как отражение в разуме познающего субъекта свойств объек­тов, существующих вне и независимо от субъекта.

Как и почему происходят научные революции? Один из первых разработчиков этой проблемы, американский фи-лософ Т. Кун делил этапы развития науки на периоды «нормальной науки» и научной революции. В период «нормальной науки» подавляющее число представителей научного сообщества принимает определенные модели научной деятельности или парадигмы, в терминологии Куна (парадигма: греч. paradeigma - пример, образец), и в их рамках решает все научные «задачи-головоломки». В содержание парадигм входят совокупность теорий, мето­дологических норм, ценностных стандартов, мировоззрен­ческих установок. Период «нормальной науки» заканчи­вается, когда появляются проблемы и задачи, не разрешимые в рамках существующей парадигмы. Тогда


она «взрывается», и ей на смену приходит новая парадиг­ма. Так происходит революция в науке.

Можно выделить четыре научные революции. Первой из них была революция XVII в., ознаменовавшая собой становление классической науки. Вторая произошла в кон­це XVIII - первой половине XIX вв. и ее результатом был переход от классической науки, ориентированной в основ­ном на изучение механических и физических явлений, к дисциплинарно организованной науке. Появление таких наук, как биология, химия, геология и др., способствует тому, что механическая картина мира перестает быть об­щенаучной и общемировоззренческой. Биология и геология вносят в картину мира идею развития, которой не было в механической картине мира.

Специфика объектов, изучаемых в биологии, геологии не могла быть выражена с помощью методов исследова­ния классической науки: нужны были новые идеалы объяс­нения, учитывающие идею развития.



Происходят изменения и в философских основаниях на­уки. Центральные проблемы философии в этот период: вопросы дифференциации и интеграции научного знания, полученного в разных научных дисциплинах, соотноше­ния различных методов научного исследования, класси­фикация наук и поиск ее критериев.

Эта революция была вызвана появлением принципи­ально новых, не имеющих места в классической науке объектов исследования, что и повлекло изменения норм, идеалов, методов. Что же касается познавательных уста­новок классической науки, то, как считает современный отечественный философ В. С. Степин, в период станов­ления дисциплинарно организованной науки они не пре­терпели существенных изменений.

Третья революция охватывает период с конца XIX до се­редины XX в. Революционные преобразования произош­ли сразу во многих науках: в физике были разработаны ре­лятивистская и квантовая теории, в биологии - генетика, в химии - квантовая химия и т. д. Возникают новые от­расли научного знания - кибернетика и теория систем. В результате сформировалось новое, неклассическое, есте-


ствознание, основания которого радикально отличались от оснований классической науки.

Идеалы и нормы неклассической науки базировались на отрицании разумно-логического содержания онтологии, способности разума строить единственно верную идеаль­ную модель реальности, позволяющую получать един­ственно истинную теорию. Допускалась возможность при­знавать истинность сразу нескольких теорий.

Изменяется идеал объяснения и описания. Если в клас­сической науке объяснению приписывалась способность давать характеристику объекта, как он «сам по себе», то в неклассической науке в качестве необходимого условия объективности объяснения и описания выдвигалось тре­бование учитывать и фиксировать факт взаимодействия объекта с приборами, с помощью которых он исследовал­ся. Наука признала, что мышлению объект не дан в его «природно-девственном», первозданном состоянии: оно изучает не объект как он есть «сам по себе», а как явилось в наблюдении его взаимодействие с прибором.

Возникла соответствующая неклассическому естествоз­нанию картина мира, в которой появилось представление о природе как сложном динамическом и иерархизирован-ном единстве саморегулирующихся систем.

Изменились и философские основания науки. Фило­софия ввела в систему обоснований последней идею ис­торической изменчивости научного знания, признала от­носительность истины, разработала представление об активности субъекта познания. Так, в философии Канта активность субъекта сводилась к его способности самому конституировать мир явлений, т. е. мир объектов научно­го знания. Очевидно, что ни о каком познании объекта как он «есть на самом деле», не могло быть и речи. Суще­ственные изменения претерпели многие философские категории, с помощью которых философия решала про­блемы научного познания. Это относится к категориям часть, целое, причина, случайность, необходимость и т. д. Изменение их содержания обусловливалось обнаружени­ем в науке того факта, что сложные системы не подчиня­ются, например, классическому принципу, согласно кото­рому целое есть сумма его частей, целое всегда больше его


части. Стало ясно, что целое и часть находятся в более сложных взаимоотношениях в сложных системах. Боль­шое внимание стало уделяться категории случайность, ибо наука открыла огромную роль случайности в становлении законов необходимости.

Четвертая научная революция началась в последней тре­ти XX вв. и сопровождалась появлением постнеклассичес-кой пауки. Объектами исследования на этом этапе разви­тия науки становятся сложные системные образования, которые характеризуются уже не только саморегуляцией (с такими объектами имела дело и неклассическая наука), но и саморазвитием. Научное исследование таких систем тре­бует принципиально новых стратегий, которые частично разработаны в синергетике. Синергетика (греч. synergeia - совместный, согласованно действующий) - это направле­ние междисциплинарных исследований, объектом кото­рых являются процессы саморазвития и самоорганизации в открытых системах (физических, химических, биологи­ческих, экологических, когнитивных и т. д.). Было выяв­лено, что материя в ее форме неорганической природы способна при определенных условиях к самоорганизации. Синергетика впервые открыла механизм возникновения порядка из хаоса, беспорядка.

Это открытие было революционным, ибо прежде наука признавала эволюцию только в сторону увеличения энт­ропии системы, т. е. увеличения беспорядка, дезорганиза­ции, хаоса. Синергетика обнаружила, что система в сво­ем развитии проходит через точки бифуркации (состояния неустойчивости) и в эти моменты она имеет веерный на­бор возможностей выбора направления дальнейшего раз­вития. Реализоваться этот выбор может путем небольших случайных воздействий, которые являются своеобразным «толчком» системы в формировании новых устойчивых структур. Если принять во внимание этот факт, то стано­вится очевидным, что взаимодействие человека с такого рода системами требует повышенной ответственности, так как человеческое действие и может стать тем «небольшим случайным воздействием», которое видоизменит про­странство возможных состояний системы. Субъект стано­вится причастным к выбору системой некоторого пути


развития из возможных. А так как сам выбор необратим, а возможный путь развития системы не может быть про­считан с большой достоверностью, то проблема ответ­ственности человека за бездумное вмешательство в про­цесс саморазвития сложных систем становится очевидной.

Сказанное позволяет сделать вывод, что постнекласси-ческая наука имеет дело с системами особой сложности, требующими принципиально новых познавательных стра­тегий. Здесь картина мира строится на основе идей эво­люции и исторического развития природы и человека. Все специальные картины мира, которые формируются в раз­личных науках, уже не могут претендовать на адекват­ность. Они становятся лишь относительно самостоятель­ными фрагментами общенаучной картины мира.

Для изучения и описания саморазвивающихся систем с вариабельным поведением не пригодны статические идеальные модели. Требуется строить сценарии, включая в них точки бифуркации и возможные пути развития си­стем. Это привело к существенной перестройке норм и идеалов исследования.

Так, осуществить построение идеальной модели уже невозможно без использования компьютерных программ, которые позволяют вводить большое число переменных и цель исторической реконструкции изучаемого объекта.

Рассмотрим пример. Допустим, объектом научного ис­следования является биосфера - природный сложный комплекс, в который включен в качестве компонента че­ловек. Последний в процессе своей производственной де­ятельности взаимодействует с биосферой и влияет на ее структуры. Чтобы узнать вредные последствия этого вли­яния с целью выработки запретов и ограничений на не­которые виды человеческой производственной деятельно­сти, следует построить идеальную модель с огромным числом параметров и переменных. Для обнаружения из­менений в биосфере потребуется изучение изменений, происходящих под воздействием промышленности в по­пуляциях, биоценозах (см. значение этих терминов в раз­деле «Материя»); следовательно, надо задействовать пара­метры, связанные с состоянием рек, озер, морей, океанов, лесов, гор, атмосферы и т. д.). Очевидно, что классичес-

В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций. Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях: а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования; б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки.

Наиболее общие виды научных революций в истории науки:

1) Внутридисциплинарные научные революции – происходящие в рамках отдельных научных дисциплин. Причинами подобных революций чаще всего служат переходы к изучению новых объектов и применение новых методов исследования.

2) Междисциплинарные научные революции – происходящие в результате взаимодействия и обмена научными идеями между различными научными дисциплинами. На ранних этапах истории науки такое взаимодействие осуществлялось путем переноса научной картины мира наиболее развитой научной дисциплины на новые, еще складывающиеся дисциплины. В современной науке междисциплинарное взаимодействие осуществляется иначе. Теперь каждая наука обладает самостоятельной картиной мира, поэтому междисциплинарное взаимодействие происходит при анализе общих черт и признаков прежних теорий и концепций.

3) Глобальные научные революции – наиболее известными из которых являются революции в естествознании, приводящие к смене научной рациональности.

Первая революция

XVII - первая половина XVIII века - становление классического естествознания. Основные характеристики: механистическая картина мира как общенаучная картина реальности; объект - малая система как механическое устройство с жестко детерминированными связями, свойство целого полностью определяется свойствами частей; субъект и процедуры его познавательной деятельности полностью исключаются из знания для достижения его объективности; объяснение как поиск механических причин и сущностей, сведение знаний о природе к принципам и представлениям механики.

Вторая революция

Конец XVIII - первая половина XIX века, переход естествознания в дисциплинарно организованную науку. Основные характеристики: механическая картина мира перестает быть общенаучной, формируются биологические, химические и другие картины реальности, не сводимые к механической картине мира; объект понимается в соответствии с научной дисциплиной не только в понятиях механики, но и таких, как «вещь», «состояние», «процесс», предполагающих развитие и изменение объекта; субъект должен быть элиминирован из результатов познания; возникает проблема разнообразия методов, единства и синтеза знаний, классификации наук; сохраняются общие познавательные установки классической науки, ее стиля мышления.

Третья революция

Конец XIX - середина XX века, преобразование параметров классической науки, становление неклассического естествознания. Существенные революционизирующие события: становление релятивистской и квантовой теорий в физике, становление генетики, квантовой химии, концепции нестационарной Вселенной, возникают кибернетика и теория систем. Основные характеристики: HКМ - развивающееся, относительно истинное знание; интеграция частнонаучных картин реальности на основе понимания природы как сложной динамической системы; объект - не столько «себетождественная вещь», сколько процесс с устойчивыми состояниями; соотнесенность объекта со средствами и операциями деятельности; сложная, развивающаяся динамическая система, состояние целого не сводимо к сумме состояний его частей; вероятностная причинность вместо жесткой, однозначной связи; новое понимание субъекта как находящегося внутри, а не вне наблюдаемого мира - необходимость фиксации условий и средств наблюдения, учет способа постановки вопросов и методов познания, зависимость от этого понимания истины, объективности, факта, объяснения; вместо единственно истинной теории допускается несколько содержащих элементы объективности теоретических описаний одного и того же эмпирического базиса.

Четвертая революция

Конец XX - начало XXI века, радикальные изменение в основаниях научного знания и деятельности - рождение новой постнеклассической науки. События - компьютеризация науки, усложнение приборных комплексов, возрастание междисциплинарных исследований, комплексных программ, сращивание эмпирических и теоретических, прикладных и фундаментальных исследований, разработка идей синергетики. Основные характеристики: НКМ - взаимодействие различных картин реальности; превращение их во фрагменты общей картины мира, взаимодействие путем «парадигмальных прививок» идей из других наук, стирание жестких разграничительных линий; на передний план выходят уникальные системы - объекты, характеризующиеся открытостью и саморазвитием, исторически развивающиеся и эволюционно преобразующиеся объекты, «человекоразмерные» комплексы; знания об объекте соотносятся не только со средствами, но и с ценностно-целевыми структурами деятельности; осознается необходимость присутствия субъекта, это выражается, прежде всего, в том, что включаются аксиологические факторы в объяснения, а научное знание с необходимостью рассматривается в контексте социального бытия, культуры, истории как нераздельное с ценностями и мировоззренческими установками, что в целом сближает науки о природе и науки о культуре. Типы научной рациональности: классическая рациональность (соответствующая классической науке в двух её состояниях – додисциплинарном и дисциплинарно организованном); неклассическая рациональность (соответствующая неклассической науке) и постнеклассическая рациональность. Между ними, как этапами развития науки, существуют своеобразные «перекрытия», причём появление каждого нового типа рациональности не отбрасывало предшествующего, а только ограничивало сферу его действия, определяя его применимость только к определённым типам проблем и задач. Каждый этап характеризуется особым состоянием научной деятельности, направленной на постоянный рост объективно-истинного знания. Если схематично представить эту деятельность как отношения «субъект-средства-объект» (включая в понимание субъекта ценностно-целевые структуры деятельности, знания и навыки применения методов и средств), то описанные этапы эволюции науки, выступающие в качестве разных типов научной рациональности, характеризуются различной глубиной рефлексии по отношению к самой научной деятельности.

Классическая рациональность С-Ср-(О)

Классический тип научной рациональности, центрируя внимание на объекте, стремится при теоретическом объяснении и описании отделить все то, что относится к субъекту, средствам и операциям его деятельности. Такое отделение (элиминация) рассматривается как необходимое условие получения объективно-истинного знания о мире. Цели и ценности науки, определяющие стратегии исследования и способы фрагментации мира, на этом этапе, как и на всех остальных, детерминированы доминирующими в культуре мировоззренческими установками и ценностными ориентациями. Но классическая наука не осмысливает этих детерминаций.

Неклассическая научная рациональность С-(Ср-О)

Неклассический тип научной рациональности учитывает связи между знаниями об объекте и характером средств и операций деятельности. Экспликация этих связей рассматривается в качестве условий объективно-истинного описания и объяснения мира. Но связи между внутринаучными и социальными ценностями и целями по-прежнему не являются предметом научной рефлексии. Неклассическая научная рациональность "берется" учитывать соотношение природы объекта со средствами и методами ее исследования. Уже не исключение всех помех, сопутствующих факторов и средств познания, а уточнение их роли и влияния становится важным условием в деле достижения истины. Этим формам рационального сознания присущ пафос максимального внимания к реальности. Если с точки зрения классической картины мира предметность рациональности - это прежде всего предметность объекта, данного субъекту в виде завершенной, ставшей действительности, то предметность неклассической рациональности - пластическое, динамическое отношение человека к реальности, в которой имеет место его активность.

Постнеклассическая научная рациональность (С-Ср-О)

Постнеклассический тип научной рациональности расширяет поле рефлексии над деятельностью. Он учитывает соотнесенность получаемых знаний об объекте не только с особенностью средств и операций деятельности, но и с ценностно-целевыми структурами. Постнеклассический образ рациональности показывает, что понятие рациональности шире понятия "рациональности науки", так как включает в себя не только логико-методологические стандарты, но еще и анализ целевых действий и поведение человека. Новый постнеклассический тип рациональности активно использует новые ориентации: нелинейность, необратимость, неравновесность, хаосомность. В новый, расширенный объем понятия "рациональность" включены интуиция, неопределенность, эвристика и другие не традиционные для классического рационализма прагматические характеристики. В новой рациональности расширяется объектная сфера за счет включений в нее систем типа: "искусственный интеллект", "виртуальная реальность", которые сами являются порождениями научно-технического прогресса. Такое радикальное расширение объектной сферы идет параллельно с его радикальным "очеловечиванием". Поэтому постнеклассическая рациональность - это единство субъективности и объективности. Сюда же проникает и социокультурное содержание. Категории субъекта и объекта образуют систему, элементы которой приобретают смысл только во взаимной зависимости друг от друга и от системы в целом.