Закон радиоактивного распада формулировка. Постоянная распада. Период полураспада. Активность. Виды радиоактивного распада и их спектры. Цепная реакция деления

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г. Таким образом, существуют следующие виды радиоактивного распада: α-распад; -распад; - распад; е - захват.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов , которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (порядковый номер элемента). Количество нуклонов в ядре называют массовым числом и обозначают А . Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами . Все изотопы одного химического элемента имеют одинаковыехимические свойства, а физические свойства могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х . Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента.

Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы.

Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распадаλ.

Постоянная распада λ- вероятность того, что ядро данного изотопа распадется за единицу времени.



Обозначим число N ядер радиоактивного распада в момент времени t, dN 1 - число ядер распавшихся за время dt. Поскольку количество ядер в веществе огромно, то выполняется закон больших чисел. Вероятность распада ядра за малое время dt находится по формуле dP = λdt .Частота равна вероятности: d N 1 / N = dP = λdt. d N 1 / N = λdt - формула определяющая количество распавшихся ядер.

Решением уравнения является: , - формула называется законом радиоактивного распада: Число радиоактивных ядер убывает со временем по экспоненциальному закону.

Здесь N- число нераспавшихся ядер к моменту времени t; N о - первоначальное число нераспавшихся ядер; λ - постоянная радиоактивного распада.

На практике используют не постоянную распада λ , а величину, называемую периодом полураспада Т .

Период полураспада (Т) - время, в течение которого распадается половинарадиоактивных ядер.

Закон радиоактивного распада черезпериодполураспада (Т) имеет вид:

Связь между периодом полураспада и постоянной распада определяется формулой: T = ln(2/λ) = 0,69/λ

Периодом полураспада может быть как очень большим, так и очень маленьким.

Для оценки степени активности радиоактивного изотопа используют величину, называемую активностью.

Активность число ядер радиоактивного препарата распадающихся за единицу времени: А = dN расп /dt

За единицу активности в СИ принимают 1 беккерель (Бк) = 1 распад/с - активность препарата, в котором за 1 с происходит 1 распад. Более крупная единица активности - 1 резерфорд (Рд) = Бк. Часто используется внесистемная единица активности - кюри (Ки), равная активности 1 г радия : 1 Ки = 3,7 Бк.

Со временем активность убывает по тому же экспоненциальному закону, по которому распадается сам радионуклид:

= .
На практике для расчетаактивности применяют формулу:

А = = λN = 0,693 N/T.

Если выразим число атомов через массу и малярную массу, тогда формула для расчетаактивности примет вид: А = = 0,693 (μТ)

где - число Авогадро; μ - молярная масса.

Термин «радиоактивность», получивший название от латинских слов «radio» - «излучаю» и «activus» - «действенный», означает самопроизвольное превращение атомных ядер, сопровождающееся испусканием гамма-излучения, элементарных частиц или более лёгких ядер. В основе всех известных науке типов радиоактивных превращений лежат фундаментальные (сильные и слабые) взаимодействия частиц, входящих в состав атома. Неизвестный до этого вид проникающего излучения, испускаемого ураном, обнаружил в 1896 году французский ученый Антуан Анри Беккерель, а в широкий обиход понятие «радиоактивность» ввела в начале 20-го века Мария Кюри, которая, исследуя невидимые лучи, испускаемые некоторыми минералами, сумела выделить чистый радиоактивный элемент - радий.

Отличия радиоактивных превращений от химических реакций

Главная особенность радиоактивных превращений заключается в том, что они происходят самопроизвольно, в то время как для химических реакций в любом случае требуются какие-либо внешние воздействия. Кроме того, радиоактивные превращения протекают непрерывно и всегда сопровождаются выделением определенного количества энергии, которое зависит от силы взаимодействия атомных частиц между собой. На скорость протекания реакций внутри атомов не влияет ни температура, ни наличие электрического и магнитного полей, ни применение самого эффективного химического катализатора, ни давление, ни агрегатное состояние вещества. Радиоактивные превращения не зависят ни от одного внешнего фактора и не могут быть ни ускорены, ни замедлены.

Закон радиоактивного распада

Интенсивность радиоактивного распада, а также его зависимость от количества атомов и времени, выражена в Законе радиоактивного распада, открытом Эрнестом Резерфордом и Фредериком Содди в 1903 году. Для того чтобы прийти к определенным выводам, нашедшим впоследствии свое отражение в новом законе, ученые провели следующий эксперимент: они отделяли один из радиоактивных продуктов и изучали его самостоятельную активность отдельно от радиоактивности вещества, из которого он был выделен. В итоге, было обнаружено, что активность любых радиоактивных продуктов вне зависимости от химического элемента со временем уменьшается в геометрической прогрессии. Исходя из этого, ученые сделали вывод, что скорость радиоактивного превращения всегда пропорциональна числу систем, которые еще не подверглись превращению.

Формула Закона радиоактивного распада выглядит следующим образом:

согласно которой число распадов −dN, произошедшее за период времени dt (очень короткий интервал), пропорционально числу атомов N. В формуле Закона радиоактивного распада есть еще одна важная величина - постоянная распада (или обратная величина периода полураспада) λ, которая характеризует вероятность распада ядра в единицу времени.

Какие химические элементы являются радиоактивными?

Нестабильность атомов химических элементов - это, скорее, исключение, чем закономерность; в большинстве своем они стабильны и с течением времени не изменяются. Однако есть определенная группа химических элементов, атомы которых более других подвержены распаду и, распадаясь, излучают энергию, а также выделяют новые частицы. Самыми распространенными химическими элементами являются радий, уран и плутоний, обладающие способностью превращаться в другие элементы с более простыми атомами (так, например, уран превращается в свинец).

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

Способность ядер самопроизвольно распадаться, испуская частицы, называется радиоактивностью. Радиоактивный распад - статистический процесс. Каждое радиоактивное ядро может распасться в любой момент и закономерность наблюдается только в среднем, в случае распада достаточно большого количества ядер.
Постоянная распада λ - вероятность распада ядра в единицу времени.
Если в образце в момент времени t имеется N радиоактивных ядер, то количество ядер dN, распавшихся за время dt пропорционально N.

Проинтегрировав (1) получим закон радиоактивного распада

N 0 - количество радиоактивных ядер в момент времени t = 0.
Cреднее время жизни τ -

Активность A - среднее количество ядер распадающихся в единицу времени

Активность измеряется в кюри (Ки) и беккерелях (Бк)

1 Ки = 3.7·10 10 распадов/c,
1 Бк = 1 распад/c.

Распад исходного ядра 1 в ядро 2, с последующим его распадом в ядро 3, описывается системой дифференциальных уравнений

гдеN 1 (t) и N 2 (t) -количество ядер, а λ 1 иλ 2 - постоянные распада ядер 1 и 2 соответственно. Решением системы (6) с начальными условиями N 1 (0) = N 10 ; N 2 (0) = 0 будет

, (7a)
. (7б)

Количество ядер 2 достигает максимального значения при .

Если λ 2 < λ 1 (>), суммарная активность N 1 (t)λ 1 + N 2 (t)λ 2 будет монотонно уменьшаться.
Если λ 2 >λ 1 (<), суммарная активность вначале растет за счет накопления ядер 2.
Если λ 2 >>λ 1 , при достаточно больших временах вклад второй экспоненты в (7б) становится пренебрежимо мал, по сравнению со вкладом первой и активности второго A 2 = λ 2 N 2 и первого изотопов A 1 = λ 1 N 1 практически сравняются. В дальнейшем активности как первого так и второго изотопов будут изменяться во времени одинаково.

То есть устанавливается так называемое вековое равновесие , при котором число ядер изотопов в цепочке распадов связано с постоянными распада (периодами полураспада) простым соотношением.

Решением системы (10) для активностей с начальными условиями N 1 (0) = N 10 ; N i (0) = 0 будет