Прототипы 9 задания егэ профиль. Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

Урок посвящен разбору задания 9 ЕГЭ по информатике


9 тема — «Кодирование информации, объем и передача информации» — характеризуется, как задания базового уровня сложности, время выполнения – примерно 5 минут, максимальный балл — 1

Кодирование текстовой информации

  • n — количество символов
  • i — количество бит на 1 символ (кодировка)
  • Кодирование графической информации

    Рассмотрим некоторые понятия и формулы, необходимые для решения ЕГЭ по информатике данной темы.

    • Пиксель – это наименьший элемент растрового изображения, который имеет определенный цвет.
    • Разрешение – это количество пикселей на дюйм размера изображения.
    • Глубина цвета - это количество битов, необходимое для кодирования цвета пикселя.
    • Если глубина кодирования составляет i битов на пиксель, код каждого пикселя выбирается из 2 i возможных вариантов, поэтому можно использовать не более 2 i различных цветов.
    • Формула для нахождения количества цветов в используемой палитре:

    • N — количество цветов
    • i — глубина цвета
    • В цветовой модели RGB (красный (R), зеленый (G), синий (B)): R (0..255) G (0..255) B (0..255) -> получаем 2 8 вариантов на каждый из трех цветов.
    • R G B: 24 бита = 3 байта — режим True Color (истинный цвет)
    • Найдем формулу объема памяти для хранения растрового изображения :

    • I — объем памяти, требуемый для хранения изображения
    • M — ширина изображения в пикселях
    • N — высота изображения в пикселях
    • i — глубина кодирования цвета или разрешение
    • Или можно формулу записать так:

      I = N * i битов

    • где N – количество пикселей (M * N) и i – глубина кодирования цвета (разрядность кодирования)
    • * для указания объема выделенной памяти встречаются разные обозначения (V или I ).

    • Следует также помнить формулы преобразования:
    • 1 Мбайт = 2 20 байт = 2 23 бит,
      1 Кбайт = 2 10 байт = 2 13 бит

    Кодирование звуковой информации

    Познакомимся с понятиями и формулами, необходимыми для решения заданий 9 ЕГЭ по информатике.

    Пример: при ƒ=8 кГц, глубине кодирования 16 бит на отсчёт и длительности звука 128 с . потребуется:


    ✍ Решение:

    I = 8000*16*128 = 16384000 бит
    I = 8000*16*128/8 = 2 3 * 1000 * 2 4 * 2 7 / 2 3 = 2 14 / 2 3 =2 11 =
    = 2048000 байт

    Определение скорости передачи информации

    • Канал связи всегда имеет ограниченную пропускную способность (скорость передачи информации), которая зависит от свойств аппаратуры и самой линии связи(кабеля)
    • Объем переданной информации I вычисляется по формуле:

    • I — объем информации
    • v — пропускная способность канала связи (измеряется в битах в секунду или подобных единицах)
    • t — время передачи
    • * Вместо обозначения скорости V иногда используется q
      * Вместо обозначения объема сообщения I иногда используется Q

    Скорость передачи данных определяется по формуле:

    и измеряется в бит/с

    Решение заданий 9 ЕГЭ по информатике



    ЕГЭ по информатике 2017 задание 9 ФИПИ вариант 1 (Крылов С.С., Чуркина Т.Е.):

    Какой минимальный объем памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 160 х 160 пикселей при условии, что в изображении могут использоваться 256 различных цветов?


    ✍ Решение:
    • Используем формулу нахождения объема:
    • Подсчитаем каждый сомножитель в формуле, стараясь привести числа к степеням двойки:
    • M x N:
    160 * 160 = 20 * 2³ * 20 * 2³ = 400 * 2 6 = = 25 * 2 4 * 2 6
  • Нахождение глубины кодирования i :
  • 256 = 2 8 т.е. 8 бит на пиксель (из формулы кол-во цветов = 2 i)
  • Находим объем:
  • I = 25 * 2 4 * 2 6 * 2 3 = 25 * 2 13 - всего бит на всё изображение
  • Переводим в Кбайты:
  • (25 * 2 13) / 2 13 = 25 Кбайт

    Результат: 25

    Детальный разбор задания 9 ЕГЭ по информатике предлагаем посмотреть в видео:

    Тема: Кодирование изображений:

    ЕГЭ по информатике задание 9.2 (источник: 9.1 вариант 11, К. Поляков):

    Рисунок размером 128 на 256 пикселей занимает в памяти 24 Кбайт (без учёта сжатия). количество цветов в палитре изображения.


    ✍ Решение:
    • где M * N — общее количество пикселей. Найдем это значение, используя для удобства степени двойки:
    128 * 256 = 2 7 * 2 8 = 2 15
  • В вышеуказанной формуле i — это глубина цвета, от которой зависит количество цветов в палитре:
  • Количество цветов = 2 i

  • Найдем i из той же формулы:
  • i = I / (M*N)

  • Учтем, что 24 Кбайт необходимо перевести в биты . Получим:
  • 2 3 * 3 * 2 10 * 2 3: i = (2 3 * 3 * 2 10 * 2 3) / 2 15 = = 3 * 2 16 / 2 15 = 6 бит
  • Теперь найдем количество цветов в палитре:
  • 2 6 = 64 вариантов цветов в цветовой палитре

    Результат: 64

    Смотрите видеоразбор задания:

    Тема: Кодирование изображений:

    ЕГЭ по информатике задание 9.3 (источник: 9.1 вариант 24, К. Поляков):

    После преобразования растрового 256-цветного графического файла в 4-цветный формат его размер уменьшился на 18 Кбайт . Каков был размер исходного файла в Кбайтах?


    ✍ Решение:
    • По формуле объема файла изображения имеем:
    • где N — общее количество пикселей,
      а i

    • i можно найти, зная количество цветов в палитре:
    • количество цветов = 2 i

    до преобразования: i = 8 (2 8 = 256) после преобразования: i = 2 (2 2 = 4)
  • Составим систему уравнений на основе имеющихся сведений, примем за x количество пикселей (разрешение):
  • I = x * 8 I - 18 = x * 2
  • Выразим x в первом уравнении:
  • x = I / 8
  • I (объем файла):
  • I - 18 = I / 4 4I - I = 72 3I = 72 I = 24

    Результат: 24

    Подробный разбор 9 задания ЕГЭ смотрите на видео:

    Тема: Кодирование изображений:

    ЕГЭ по информатике задание 9.4 (источник: 9.1 вариант 28, К. Поляков, С. Логинова):

    Цветное изображение было оцифровано и сохранено в виде файла без использования сжатия данных. Размер полученного файла – 42 Мбайт 2 раза меньше и глубиной кодирования цвета увеличили в 4 раза больше по сравнению с первоначальными параметрами. Сжатие данных не производилось. Укажите размер файла в Мбайт , полученного при повторной оцифровке.


    ✍ Решение:
    • По формуле объема файла изображения имеем:
    • где N
      а i

    • В такого рода задачах необходимо учесть, что уменьшение разрешения в 2 раза, подразумевает уменьшение в 2 раза пикселей отдельно по ширине и по высоте. Т.е. в целом N уменьшается в 4 раза !
    • Составим систему уравнений на основе имеющихся сведений, в которой первое уравнение будет соответствовать данным до преобразования файла, а второе уравнение — после:
    42 = N * i I = N / 4 * 4i
  • Выразим i в первом уравнении:
  • i = 42 / N
  • Подставим во второе уравнение и найдем I (объем файла):
  • \[ I= \frac {N}{4} * 4* \frac {42}{N} \]

  • После сокращений получим:
  • I = 42

    Результат: 42

    Тема: Кодирование изображений:

    ЕГЭ по информатике задание 9.5 (источник: 9.1 вариант 30, К. Поляков, С. Логинова):

    Изображение было оцифровано и сохранено в виде растрового файла. Получившийся файл был передан в город А по каналу связи за 72 секунды . Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б , пропускная способность канала связи с городом Б в 3 раза выше, чем канала связи с городом А.
    Б ?


    ✍ Решение:
    • По формуле скорости передачи файла имеем:
    • где I — объем файла, а t — время

    • По формуле объема файла изображения имеем:
    • где N — общее количество пикселей или разрешение,
      а i — глубина цвета (количество бит, выделенное на 1 пиксель)

    • Для данной задачи, необходимо уточнить, что разрешение на самом деле имеет два сомножителя (пикселей по ширине * пикселей по высоте). Поэтому при увеличении разрешения в два раза, увеличатся оба числа, т.е. N увеличится в 4 раза вместо двух.
    • Изменим формулу получения объема файла для города Б :
    • \[ I= \frac {2*N * i}{3} \]

    • Для города А и Б заменим значения объема в формуле для получения скорости:
    • \[ V= \frac {N*i}{72} \]

      \[ 3*V= \frac{\frac {4*N*i}{3}}{t} \]

      \[ t*3*V= \frac {4*N*i}{3} \]

    • Подставим значение скорости из формулы для города А в формулу для города Б:
    • \[ \frac {t*3*N*i}{72}= \frac {4*N*i}{3} \]

    • Выразим t :
    t = 4 * 72 / (3 * 3) = 32 секунды

    Результат: 32

    Другой способ решения смотрите в видеоуроке:

    Тема: Кодирование изображений:

    ЕГЭ по информатике задание 9.6 (источник: 9.1 вариант 33, К. Поляков):

    Камера делает фотоснимки размером 1024 х 768 пикселей. На хранение одного кадра отводится 900 Кбайт .
    Найдите максимально возможное количество цветов в палитре изображения.


    ✍ Решение:
    • Количество цветов зависит от глубины кодирования цвета, которая измеряется в битах. Для хранения кадра, т.е. общего количества пикселей выделено 900 Кбайт. Переведем в биты:
    900 Кбайт = 2 2 * 225 * 2 10 * 2 3 = 225 * 2 15
  • Посчитаем общее количество пикселей (из заданного размера):
  • 1024 * 768 = 2 10 * 3 * 2 8
  • Определим объем памяти, необходимый для хранения не общего количества пикселей, а одного пикселя ([память для кадра]/[кол-во пикселей]):
  • \[ \frac {225 * 2^{15}}{3 * 2^{18}} = \frac {75}{8} \approx 9 \]

    9 бит на 1 пиксель

  • 9 бит — это i — глубина кодирования цвета. Количество цветов = 2 i :
  • 2 9 = 512

    Результат: 512

    Смотрите подробное решение на видео:


    Тема: Кодирование звука:

    ЕГЭ по информатике 2017 задание 9 ФИПИ вариант 15 (Крылов С.С., Чуркина Т.Е.):

    На студии при четырехканальной (квадро ) звукозаписи с 32 -битным разрешением за 30 секунд был записан звуковой файл. Сжатие данных не производилось. Известно, что размер файла оказался 7500 Кбайт.

    С какой частотой дискретизации (в кГц) велась запись? В качестве ответа укажите только число, единицы измерения указывать не нужно.


    ✍ Решение:
    • По формуле объема звукового файла получим:
    • I = β * t * ƒ * S

    • Из задания имеем:
    I = 7500 Кбайт β = 32 бита t = 30 секунд S = 4 канала
  • ƒ — частота дискретизации — неизвестна, выразим ее из формулы:
  • \[ ƒ = \frac {I}{S*B*t} = \frac {7500 * 2^{10} * 2^2 бит}{2^7 * 30}Гц = \frac { 750 * 2^6}{1000}КГц = 2^4 = 16 \]

    2 4 = 16 КГц

    Результат: 16

    Для более детального разбора предлагаем посмотреть видео решения данного 9 задания ЕГЭ по информатике:

    Тема: Кодирование изображений:

    9 задание. Демоверсия ЕГЭ 2018 информатика:

    Автоматическая фотокамера производит растровые изображения размером 640 ×480 пикселей. При этом объём файла с изображением не может превышать 320 Кбайт, упаковка данных не производится.
    Какое максимальное количество цветов можно использовать в палитре?


    ✍ Решение:
    • По формуле объема файла изображения имеем:
    • где N — общее количество пикселей или разрешение, а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель)

    • Посмотрим, что из формулы нам уже дано:
    I = 320 Кбайт, N = 640 * 420 = 307200 = 75 * 2 12 всего пикселей, i - ?
  • Количество цветов в изображении зависит от параметра i , который неизвестен. Вспомним формулу:
  • количество цветов = 2 i

  • Поскольку глубина цвета измеряется в битах, то необходимо объем перевести из Килобайт в биты:
  • 320 Кбайт = 320 * 2 10 * 2 3 бит = 320 * 2 13 бит
  • Найдем i :
  • \[ i = \frac {I}{N} = \frac {320 * 2^{13}}{75 * 2^{12}} \approx 8,5 бит \]

  • Найдем количество цветов:
  • 2 i = 2 8 = 256

    Результат: 256

    Подробное решение данного 9 задания из демоверсии ЕГЭ 2018 года смотрите на видео:

    Тема: Кодирование звука:

    ЕГЭ по информатике задание 9.9 (источник: 9.2 вариант 36, К. Поляков):

    Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд; пропускная способность канала связи с городом Б в 4 раза выше, чем канала связи с городом А .

    Сколько секунд длилась передача файла в город A ? В ответе запишите только целое число, единицу измерения писать не нужно.


    ✍ Решение:
    • Для решения понадобится формула нахождения скорости передачи данных формулы:
    • Вспомним также формулу объема звукового файла:
    • I = β * ƒ * t * s

      где:
      I - объем
      β - глубина кодирования
      ƒ - частота дискретизации
      t - время
      S - кол-во каналов (если не указывается, то моно)

    • Выпишем отдельно, все данные, касающиеся города Б (про А практически ничего не известно):
    город Б: β - в 2 раза выше ƒ - в 3 раза меньше t - 15 секунд, пропускная способность (скорость V ) - в 4 раза выше
  • Исходя из предыдущего пункта, для города А получаем обратные значения:
  • город А: β Б / 2 ƒ Б * 3 I Б / 2 V Б / 4 t Б / 2, t Б * 3, t Б * 4 - ?
  • Дадим объяснения полученным данным:
  • так как глубина кодирования (β ) для города Б выше в 2 раза, то для города А она будет ниже в 2 раза, соответственно, и t уменьшится в 2 раза:
  • t = t/2
  • так как частота дискретизации (ƒ) для города Б меньше в 3 раза, то для города А она будет выше в 3 раза; I и t изменяются пропорционально, значит, при увеличении частоты дискретизации увеличится не только объем, но и время:
  • t = t * 3
  • скорость (V ) (пропускная способность) для города Б выше в 4 раза, значит, для города А она будет ниже в 4 раза; раз скорость ниже, то время выше в 4 раза (t и V — обратно пропорциональная зависимость из формулы V = I/t ):
  • t = t * 4
  • Таким образом, с учетом всех показателей, время для города А меняется так:
  • \[ t_А = \frac {15}{2} * 3 * 4 \]

    90 секунд

    Результат: 90

    Подробное решение смотрите на видео:

    Тема: Кодирование звука:

    ЕГЭ по информатике задание 9.10 (источник: 9.2 вариант 43, К. Поляков):

    Музыкальный фрагмент был записан в формате стерео (двухканальная запись ), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 30 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось.

    Укажите размер файла в Мбайт , полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.


    ✍ Решение:

      I = β * ƒ * t * S

      I - объем
      β - глубина кодирования
      ƒ - частота дискретизации
      t - время
      S -количество каналов

    • Выпишем отдельно, все данные, касающиеся первого состояния файла, затем второго состояния — после преобразования:
    1 состояние: S = 2 канала I = 30 Мбайт 2 состояние: S = 1 канал β = в 2 раза выше ƒ = в 1,5 раза ниже I = ?
  • Так как изначально было 2 канала связи (S ), а стал использоваться один канал связи, то файл уменьшился в 2 раза:
  • I = I / 2
  • Глубина кодирования (β ) увеличилась в 2 раза, то и объем (I ) увеличится в 2 раза (пропорциональная зависимость):
  • I = I * 2
  • Частота дискретизации (ƒ ) уменьшилась в 1,5 раза, значит, объем (I ) тоже уменьшится в 1,5 раза:
  • I = I / 1,5
  • Рассмотрим все изменения объема преобразованного файла:
  • I = 30 Мбайт / 2 * 2 / 1,5 = 20 Мбайт

    Результат: 20

    Смотрите видеоразбор данной задачи:

    Тема: Кодирование звуковых файлов:

    ЕГЭ по информатике задание 9.11 (источник: 9.2 вариант 72, К. Поляков):

    Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 100 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 4 раз меньше , чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд.

    Во сколько раз скорость (пропускная способность канала) в город Б больше пропускной способности канала в город А ?


    ✍ Решение:
    • Вспомним формулу объема звукового файла:
    • I = β * ƒ * t * S

      I - объем
      β - глубина кодирования
      ƒ - частота дискретизации
      t - время

    • Выпишем отдельно, все данные, касающиеся файла, переданного в город А , затем преобразованного файла, переданного в город Б :
    А: t = 100 c. Б: β = в 3 раза выше ƒ = в 4 раза ниже t = 15 c.

    ✎ 1 способ решения:

  • Скорость передачи данных (пропускная способность) зависит от времени передачи файла: чем больше время, тем ниже скорость. Т.е. во сколько раз увеличится время передачи, во столько раз уменьшится скорость и наоборот.
  • Из предыдущего пункта видим, что если мы вычислим, во сколько раз уменьшится или увеличится время передачи файла в город Б (по сравнению с городом А), то мы поймем, во сколько раз увеличится или уменьшится скорость передачи данных в город Б (обратная зависимость).
  • Соответственно, представим, что преобразованный файл передается в город А . Объем файла изменился в 3/4 раза (глубина кодирования (β) в 3 раза выше, частота дискретизации (ƒ) в 4 раза ниже). Объем и время изменяются пропорционально. Значит и время изменится в 3/4 раза:
  • t A для преобразов. = 100 секунд * 3 / 4 = 75 секунд
  • Т.е. преобразованный файл передавался бы в город А 75 секунд, а в город Б 15 секунд. Вычислим, во сколько раз снизилось время передачи:
  • 75 / 15 = 5
  • Раз время передачи в город Б снизилось в 5 раз, соответственно, скорость увеличилась в 5 раз.
  • Ответ: 5

    ✎ 2 способ решения:

  • Выпишем отдельно все данные, касающиеся файла, переданного в город А : А: t А = 100 c. V А = I / 100
  • Поскольку увеличение или уменьшение во сколько-то раз разрешения и частоты дискретизации приводит к соответствующему увеличению или уменьшению объема файла (пропорциональная зависимость), то запишем известные данные для преобразованного файла, переданного в город Б :
  • Б: β = в 3 раза выше ƒ = в 4 раза ниже t = 15 c. I Б = (3 / 4) * I V Б = ((3 / 4) * I) / 15
  • Теперь найдем соотношение V Б к V А:
  • \[ \frac {V_Б}{V_А} = \frac {3/_4 * I}{15} * \frac {100}{I} = \frac {3/_4 * 100}{15} = \frac {15}{3} = 5 \]

    (((3/4) * I) / 15) * (100 / I)= (3/4 * 100) / 15 = 15/3 = 5

    Результат: 5

    Подробный видеоразбор задания:

    Тема: Кодирование звука:

    ЕГЭ по информатике задание 9.12 (источник: 9.2 вариант 80, К. Поляков):

    Производится четырёхканальная (квадро) звукозапись с частотой дискретизации 32 кГц и 32-битным разрешением. Запись длится 2 минуты , её результаты записываются в файл, сжатие данных не производится.

    Определите приблизительно размер полученного файла (в Мбайт ). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 10 .


    ✍ Решение:
    • Вспомним формулу объема звукового файла:
    • I = β * ƒ * t * S

      I - объем
      β - глубина кодирования
      ƒ - частота дискретизации
      t - время
      S - количество каналов

    • Для простоты расчетов пока не будем брать во внимание количество каналов. Рассмотрим, какие данные у нас есть, и какие из них необходимо перевести в другие единицы измерения:
    β = 32 бита ƒ = 32кГц = 32000Гц t = 2 мин = 120 с
  • Подставим данные в формулу; учтем, что результат необходимо получить в Мбайтах, соответственно, произведение будем делить на 2 23 (2 3 (байт) * 2 10 (Кбайт) * 2 10 (Мбайт)):
  • (32 * 32000 * 120) / 2 23 = =(2 5 * 2 7 * 250 * 120) / 2 23 = = (250*120) / 2 11 = = 30000 / 2 11 = = (2 4 * 1875) / 2 11 = = 1875 / 128 ~ 14,6 V - скорость Q - объем t - время
  • Что нам известно из формулы (для удобства решения будем использовать степени двойки):
  • V = 128000 бит/с = 2 10 * 125 бит/с t = 1 мин = 60 с = 2 2 * 15 с 1 символ кодируется 16-ю битами всего символов - ?
  • Если мы найдем, сколько бит необходимо для всего текста, тогда, зная что на 1 символ приходится 16 бит, мы сможем найти сколько всего символов в тексте. Таким образом, найдем объем:
  • Q = 2 10 * 125 * 2 2 * 15 = = 2 12 * 1875 бит на все символы

  • Когда мы знаем, что на 1 символ необходимо 16 бит, а на все символы 2 12 * 1875 бит, то можем найти общее количество символов:
  • кол-во символов = 2 12 * 1875 / 16 = 2 12 * 1875 / 2 4 = = 2 8 * 1875 = 480000

    Результат: 480000

    Разбор 9 задания:

    Тема: Скорость передачи информации:

    ЕГЭ по информатике задание 9.14 (

    Рассмотрим типовые задания 9 ОГЭ по математике. Тематика 9 задания - статистика и вероятности. Задание не является трудным даже для человека, не знакомого с теорией вероятностей или статистикой.

    Обычно нам предлагается набор вещей - яблок, конфет, чашек или чего угодно различающихся цветом или другим качеством. Нам необходимо оценить вероятность попадания одного из класса вещей одному человеку. Задача сводится к вычислению общего количества вещей, а затем делению числа вещей необходимого класса на общее количество.

    Итак, перейдем к рассмотрению типовых вариантов.

    Разбор типовых вариантов задания №9 ОГЭ по математике

    Первый вариант задания

    У бабушки 20 чашек: 6 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

    Решение:

    Как было сказано выше, найдем общее число чашек - в данном случае это известно по условию - 20 чашек. Нам необходимо найти число синих чашек:

    Теперь мы можем найти вероятность:

    14 / 20 = 7 / 10 = 0,7

    Второй вариант задания

    В магазине канцтоваров продаётся 138 ручек, из них 34 красные, 23 зелёные, 11 фиолетовые, ещё есть синие и чёрные, их поровну. Найдите вероятность того, что при случайном выборе одной ручки будет выбрана красная или чёрная ручка.

    Решение:

    Найдем вначале число черных ручек, для этого из общего числа вычитаем все известные цвета и делим на два, так как синих и чёрных ручек поровну:

    (138 - 34 - 23 - 11) / 2 = 35

    После этого можем найти вероятность, сложив количество чёрных и красных, разделив на общее количество:

    (35 + 34) / 138 = 0,5

    Третий вариант задания

    В фирме такси в данный момент свободно 12 машин: 1 чёрная, 3 жёлтых и 8,зелёных. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет жёлтое такси.

    Решение:

    Найдем общее число машин:

    Теперь оценим вероятность, разделив количество желтых на общее число:

    Ответ: 0,25

    Демонстрационный вариант ОГЭ 2019

    На тарелке лежат пирожки, одинаковые на вид: 4 с мясом, 8 с капустой и 3 с яблоками. Петя наугад выбирает один пирожок. Найдите вероятность того, что пирожок окажется с яблоками.

    Решение:

    Классическая задача по теории вероятностей. В нашем случае удачный исход - это пирожок с яблоком. Пирожков с яблоками 3, а всего пирожков:

    Вероятность того, что попадется пирожок с яблоками - это количество пирожков с яблоками, деленное на общее количество:

    3 / 15 = 0,2 или 20%

    Четвертый вариант задания

    Вероятность того, что новый принтер прослужит больше года, равна 0,95. Вероятность того, что он прослужит два года или больше, равна 0,88. Найдите вероятность того, что он прослужит меньше двух лет, но не меньше года.

    Решение:

    Введем обозначения событий:

    X – принтер прослужит «больше 1 года»;

    Y – принтер прослужит «2 года или больше»;

    Z – принтер прослужит «не менее 1 года, но меньше 2-х лет».

    Анализируем. События Y и Z независимы, т.к. исключают друг друга. Событие X произойдет в любом случае, т.е. и при наступлении события Y, и наступлении события Z. Действительно, «больше 1 года» означает и «2 года», и «больше 2-х лет», и «меньше 2-х лет, но не менее 1 года».

    Р(X)=Р(Y)+Р(Z).

    По условию вероятность события Х (т.е. «больше года») равно 0,95, события Y (т.е. «2 года и больше») – 0,88.

    Подставим в формулу числовые данные:

    Получаем:

    Р(Z)=0,95–0,88=0,07

    Р(Z) – искомое событие.

    Ответ: 0,07

    Пятый вариант задания

    За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что девочки окажутся на соседних местах.

    Решение:

    Для расчета вероятности используем классическую ее формулу:

    где m – кол-во благоприятных исходов для искомого события, n – общее кол-во всех возможных исходов.

    Одна из девочек (которая села первой) занимает стул произвольно. Значит, для другой имеется 9-1=8 стульев, чтобы сесть. Т.е. кол-во всех возможных вариантов событий равно n=8.

    Другая девочка должна занять один из 2-х стульев, соседствующих со стулом первой. Только такая ситуация может считаться благоприятным исходом события. Значит, кол-во благоприятных исходов составляет m=2.

    Подставляем данные в формулу для расчета вероятности:

    Среднее общее образование

    Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

    Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

    Математика

    Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

    Разбираем задания и решаем примеры с учителем

    Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

    Минимальный порог - 27 баллов.

    Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

    Определяющим признаком каждой части работы является форма заданий:

    • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
    • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

    Панова Светлана Анатольевна , учитель математики высшей категории школы, стаж работы 20 лет:

    «Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

    Задание № 1 - проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 - 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

    Пример 1. В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня - 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

    Решение:

    1) Найдем количество потраченной воды за месяц:

    177 - 172 = 5 (куб м)

    2) Найдем сколько денег заплатят за потраченную воду:

    34,17 · 5 = 170,85 (руб)

    Ответ: 170,85.


    Задание № 2 -является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований - это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

    #ADVERTISING_INSERT#

    Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?


    Решение:

    2) 1000 · 3/4 = 750 (акций) - составляют 3/4 от всех купленных акций.

    6) 247500 + 77500 = 325000 (руб) - бизнесмен получил после продажи 1000 акций.

    7) 340000 – 325000 = 15000 (руб) - потерял бизнесмен в результате всех операций.

    Ответ: 15000.

    Задание № 3 - является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

    Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

    Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

    Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

    S = В +

    Г
    2
    где В = 10, Г = 6, поэтому

    S = 18 +

    6
    2
    Ответ: 20.

    Читайте также: ЕГЭ по физике: решение задач о колебаниях

    Задание № 4 - задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

    Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

    Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k :

    у которых все вершины красные.

    3) Один пятиугольник, у которого все вершины красные.

    4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

    у которых вершины красные или с одной синей вершиной.

    у которых вершины красные или с одной синей вершиной.

    8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

    9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

    10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

    11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин - синяя точка, больше, чем многоугольников, у которых все вершины только красные.

    Ответ: 10.

    Задание № 5 - базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

    Пример 5. Решите уравнение 2 3 + x = 0,4 · 5 3 + x .

    Решение. Разделим обе части данного уравнения на 5 3 + х ≠ 0, получим

    2 3 + x = 0,4 или 2 3 + х = 2 ,
    5 3 + х 5 5

    откуда следует, что 3 + x = 1, x = –2.

    Ответ: –2.

    Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

    Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB . Найдите площадь трапеции ABED .


    Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC . Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB . Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

    Следовательно, S ABED = S ΔABC S ΔCDE = 129 – 32,25 = 96,75.

    Задание № 7 - проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

    Пример 7. К графику функции y = f (x ) в точке с абсциссой x 0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f ′(x 0).

    Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

    (y y 1)(x 2 – x 1) = (x x 1)(y 2 – y 1)

    (y – 3)(3 – 4) = (x – 4)(–1 – 3)

    (y – 3)(–1) = (x – 4)(–4)

    y + 3 = –4x + 16| · (–1)

    y – 3 = 4x – 16

    y = 4x – 13, где k 1 = 4.

    2) Найдём угловой коэффициент касательной k 2 , которая перпендикулярна прямой y = 4x – 13, где k 1 = 4, по формуле:

    3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f ′(x 0) = k 2 = –0,25.

    Ответ: –0,25.

    Задание № 8 - проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

    Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.


    Решение. 1) V куба = a 3 (где а – длина ребра куба), поэтому

    а 3 = 216

    а = 3 √216

    2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a , d = 6, d = 2R , R = 6: 2 = 3.

    Задание № 9 - требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

      преобразования числовых рациональных выражений;

      преобразования алгебраических выражений и дробей;

      преобразования числовых/буквенных иррациональных выражений;

      действия со степенями;

      преобразование логарифмических выражений;

    1. преобразования числовых/буквенных тригонометрических выражений.

    Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и

    < α < π.
    4

    Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

    tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
    cos 2 α 0,8 8 4 4 4

    Значит, tg 2 α = ± 0,5.

    3) По условию

    < α < π,
    4

    значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

    Ответ: –0,5.

    #ADVERTISING_INSERT# Задание № 10 - проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

    Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv 2 sin 2 α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
    Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).

    mv 2 sin 2 α ≥ 50

    2· 10 2 sin 2 α ≥ 50

    200 · sin 2 α ≥ 50

    Так как α ∈ (0°; 90°), то будем решать только

    Изобразим решение неравенства графически:


    Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

    Задание № 11 - является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

    Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

    Решение: Обозначим a 1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S 16 = 560 – общее количество задач, a 16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

    560 = (5 + a 16) · 8,

    5 + a 16 = 560: 8,

    5 + a 16 = 70,

    a 16 = 70 – 5

    a 16 = 65.

    Ответ: 65.

    Задание № 12 - проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

    Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

    Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).

    2) Найдем производную функции:

    4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:


    Искомая точка максимума x = –8.

    Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11 Скачать бесплатно методические пособия по алгебре

    Задание № 13 -повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

    а) Решите уравнение 2log 3 2 (2cosx ) – 5log 3 (2cosx ) + 2 = 0

    б) Найдите все корни этого уравнения, принадлежащие отрезку .

    Решение: а) Пусть log 3 (2cosx ) = t , тогда 2t 2 – 5t + 2 = 0,


    log 3 (2cosx ) = 2
    2cosx = 9
    cosx = 4,5 ⇔ т.к. |cosx | ≤ 1,
    log 3 (2cosx ) = 1 2cosx = √3 cosx = √3
    2 2
    то cosx = √3
    2

    x = π + 2πk
    6
    x = – π + 2πk , k Z
    6

    б) Найдём корни, лежащие на отрезке .


    Из рисунка видно, что заданному отрезку принадлежат корни

    11π и 13π .
    6 6
    Ответ: а) π + 2πk ; – π + 2πk , k Z ; б) 11π ; 13π .
    6 6 6 6
    Задание № 14 -повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

    Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

    а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

    б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

    Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

    Тогда расстояние между хордами составляет либо

    = = √980 = = 2√245

    = = √788 = = 2√197.

    По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

    б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания - к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание - H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

    Значит, искомый угол равен

    ∠ABH = arctg AH = arctg 28 = arctg14.
    BH 8 – 6

    Задание № 15 - повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

    Пример 15. Решите неравенство |x 2 – 3x | · log 2 (x + 1) ≤ 3x x 2 .

    Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

    1) Пусть x 2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

    2) Пусть теперь x 2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x 2 – 3x ) · log 2 (x + 1) ≤ 3x x 2 и разделить на положительное выражение x 2 – 3x . Получим log 2 (x + 1) ≤ –1, x + 1 ≤ 2 –1 , x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

    3) Наконец, рассмотрим x 2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x x 2) · log 2 (x + 1) ≤ 3x x 2 . После деления на положительное выражение 3x x 2 , получим log 2 (x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

    Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ ∪ {3}.

    Ответ: (–1; –0.5] ∪ ∪ {3}.

    Задание № 16 - повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

    В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

    Решение: а)


    1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

    2) Пусть EF = DH = x , тогда BE = 2x , BF = x √3 по теореме Пифагора.

    3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

    BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

    4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

    2x = 4 – 2x
    2x (√3 + 1) 4
    1 = 2 – x
    √3 + 1 2

    √3 – 1 = 2 – x

    x = 3 – √3

    EF = 3 – √3

    2) S DEFH = ED · EF = (3 – √3 ) · 2(3 – √3 )

    S DEFH = 24 – 12√3.

    Ответ: 24 – 12√3.


    Задание № 17 - задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание - текстовая задача с экономическим содержанием.

    Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х - целое число. Найдите наибольшее значение х , при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

    Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х ), а в конце - (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х ). В начале четвёртого года вклад составит (26,62 + 2,1х) , а в конце - (26,62 + 2,1х ) + (26,62 + 2,1х ) · 0,1 = (29,282 + 2,31х ). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

    (29,282 + 2,31x ) – 20 – 2x < 17

    29,282 + 2,31x – 20 – 2x < 17

    0,31x < 17 + 20 – 29,282

    0,31x < 7,718

    x < 7718
    310
    x < 3859
    155
    x < 24 139
    155

    Наибольшее целое решение этого неравенства - число 24.

    Ответ: 24.


    Задание № 18 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

    При каких a система неравенств

    x 2 + y 2 ≤ 2ay a 2 + 1
    y + a ≤ |x | – a

    имеет ровно два решения?

    Решение: Данную систему можно переписать в виде

    x 2 + (y a ) 2 ≤ 1
    y ≤ |x | – a

    Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а ). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = | x | – a , причём последний есть график функции
    y = | x | , сдвинутый вниз на а . Решение данной системы есть пересечение множеств решений каждого из неравенств.

    Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.


    Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а ), а точка R – координаты (0, –а ). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,

    Qr = 2a = √2, a = √2 .
    2
    Ответ: a = √2 .
    2


    Задание № 19 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

    Пусть Sn сумма п членов арифметической прогрессии (а п ). Известно, что S n + 1 = 2n 2 – 21n – 23.

    а) Укажите формулу п -го члена этой прогрессии.

    б) Найдите наименьшую по модулю сумму S n .

    в) Найдите наименьшее п , при котором S n будет квадратом целого числа.

    Решение : а) Очевидно, что a n = S n S n – 1 . Используя данную формулу, получаем:

    S n = S (n – 1) + 1 = 2(n – 1) 2 – 21(n – 1) – 23 = 2n 2 – 25n ,

    S n – 1 = S (n – 2) + 1 = 2(n – 1) 2 – 21(n – 2) – 23 = 2n 2 – 25n + 27

    значит, a n = 2n 2 – 25n – (2n 2 – 29n + 27) = 4n – 27.

    Б) Так как S n = 2n 2 – 25n , то рассмотрим функцию S (x ) = | 2x 2 – 25x| . Ее график можно увидеть на рисунке.


    Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S (1) = |S 1 | = |2 – 25| = 23, S (12) = |S 12 | = |2 · 144 – 25 · 12| = 12, S (13) = |S 13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

    в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как S n = 2n 2 – 25n = n (2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

    Осталось проверить значения с 13 до 25:

    S 13 = 13 · 1, S 14 = 14 · 3, S 15 = 15 · 5, S 16 = 16 · 7, S 17 = 17 · 9, S 18 = 18 · 11, S 19 = 19 · 13, S 20 = 20 · 13, S 21 = 21 · 17, S 22 = 22 · 19, S 23 = 23 · 21, S 24 = 24 · 23.

    Получается, что при меньших значениях п полный квадрат не достигается.

    Ответ: а) a n = 4n – 27; б) 12; в) 25.

    ________________

    *С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень - 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии - областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

    В задании №9 ЕГЭ по математике профильного уровня нам необходимо выполнить преобразование выражений и произвести элементарные вычисления. Чаще всего в этом разделе встречаются тригонометрические выражения, поэтому для успешного выполнения необходимо знать формулы приведения и другие тригонометрические тождества.

    Разбор типовых вариантов заданий №9 ЕГЭ по математике профильного уровня

    Первый вариант задания (демонстрационный вариант 2018)

    Найдите sin2α , если cosα = 0,6 и π < α < 2π.

    Алгоритм решения:
    1. Находим значение синуса данного угла.
    2. Вычисляем значение sin2α.
    3. Записываем ответ.
    Решение:

    1. α лежит в третьей или четвертой четвертях, значит синус угла отрицательный. Воспользуемся осномным тригонометрическим тождеством:

    2. По формуле синуса двойного угла: sin2α = 2sinαcosα = 2∙(-0,8)∙0,6 = -0,96

    Ответ: -0,96.

    Второй вариант задания (из Ященко, №1)

    Найдите , если .

    Алгоритм решения:
    1. Преобразуем формулу косинуса двойного угла.
    2. Вычисляем косинус.
    3. Записываем ответ.
    Решение:

    1. Преобразуем формулу косинуса двойного угла:

    2. Вычисляем косинус искомого угла 2α, умноженный на 25, подставив данное значение косинуса угла α

    Третий вариант задания (из Ященко, №16)

    Найдите значение выражения .

    Алгоритм решения:
    1. Рассматриваем выражение.
    2. Используем свойства тригонометрических функций для определения значений синуса и косинуса заданных углов.
    3. Вычисляем значение выражения.
    4. Записываем ответ.
    Решение:

    1. Выражение представляет собой произведение чисел и значений тригонометрических функций отрицательных углов.

    2. Воспользуемся формулами:

    3. Тогда получаем:

    Ответ: -23.

    Четвертый вариант задания (из Ященко)

    Найдите значение выражения .

    Алгоритм решения:
    1. Анализируем выражение.
    2. Преобразовываем и вычисляем выражение.
    3. Записываем ответ.
    Решение:

    1. Выражение содержит два корня. Под корнем в числителе стоит разность квадратов. Для упрощения вычислений можно разность квадратов разложить на множители по формуле сокращенного умножения.