Как решать выражения с логарифмами. Преобразование выражений с использованием свойств логарифмов, примеры, решения. Основное логарифмическое тождество


Перечисленные равенства при преобразовании выражений с логарифмами используются как справа налево, так и слева направо.

Стоит заметить, что запоминать следствия из свойств необязательно: при проведении преобразований можно обойтись основными свойствами логарифмов и другими фактами (например, тем, что при b≥0), из которых соответствующие следствия вытекают. «Побочный эффект» такого подхода проявляется лишь в том, что решение будет немного длиннее. К примеру, чтобы обойтись без следствия, которое выражается формулой , а отталкиваться лишь от основных свойств логарифмов, придется провести цепочку преобразований следующего вида: .

То же самое можно сказать и про последнее свойство из приведенного выше списка, которому отвечает формула , так как оно тоже следует из основных свойств логарифмов. Главное понимать, что всегда имеется возможность у степени положительного числа с логарифмом в показателе поменять местами основание степени и число под знаком логарифма. Справедливости ради, заметим, что примеры, подразумевающие осуществление преобразований подобного рода, на практике встречаются редко. Несколько примеров мы приведем ниже по тексту.

Преобразование числовых выражений с логарифмами

Свойства логарифмов вспомнили, теперь пора учиться применять их на практике для преобразования выражений. Естественно начать с преобразования числовых выражений, а не выражений с переменными, так как на них удобнее и проще познавать азы. Так мы и сделаем, причем начнем с очень простых примеров, чтобы научиться выбирать нужное свойство логарифма, но постепенно будем усложнять примеры, вплоть до момента, когда для получения конечного результата нужно будет применять несколько свойств подряд.

Выбор нужного свойства логарифмов

Свойств логарифмов не так мало, и понятно, что нужно уметь выбрать из них подходящее, которое в данном конкретном случае приведет к требуемому результату. Обычно это сделать нетрудно, сопоставив вид преобразуемого логарифма или выражения с видами левых и правых частей формул, выражающих свойства логарифмов. Если левая или правая часть одной из формул совпадает с заданным логарифмом или выражением, то, скорее всего, именно это свойство и надо применять при преобразовании. Следующие примеры это наглядно демонстрируют.

Начнем с примеров преобразования выражений с использованием определения логарифма, которому отвечает формула a log a b =b , a>0 , a≠1 , b>0 .

Пример.

Вычислите, если это возможно: а) 5 log 5 4 , б) 10 lg(1+2·π) , в) , г) 2 log 2 (−7) , д) .

Решение.

В примере под буквой а) явно видна структура a log a b , где a=5 , b=4 . Эти числа удовлетворяют условиям a>0 , a≠1 , b>0 , поэтому можно безбоязненно воспользоваться равенством a log a b =b . Имеем 5 log 5 4=4 .

б) Здесь a=10 , b=1+2·π , условия a>0 , a≠1 , b>0 выполнены. При этом имеет место равенство 10 lg(1+2·π) =1+2·π .

в) И в этом примере мы имеем дело со степенью вида a log a b , где и b=ln15 . Так .

Несмотря на принадлежность к тому же виду a log a b (здесь a=2 , b=−7 ), выражение под буквой г) нельзя преобразовать по формуле a log a b =b . Причина в том, что оно не имеет смысла, так как содержит отрицательное число под знаком логарифма. Более того, число b=−7 не удовлетворяет условию b>0 , что не дает возможности прибегнуть к формуле a log a b =b , так как она требует выполнения условий a>0 , a≠1 , b>0 . Итак, нельзя говорить о вычислении значения 2 log 2 (−7) . В этом случае запись 2 log 2 (−7) =−7 будет ошибкой.

Аналогично и в примере под буквой д) нельзя привести решение вида , так как исходное выражение не имеет смысла.

Ответ:

а) 5 log 5 4 =4 , б) 10 lg(1+2·π) =1+2·π , в) , г), д) выражения не имеют смысла.

Часто бывает полезно преобразование, при котором положительное число представляется в виде степени какого-то положительного и отличного от единицы числа с логарифмом в показателе. В его основе лежит то же определение логарифма a log a b =b , a>0 , a≠1 , b>0 , но формула применяется справа налево, то есть, в виде b=a log a b . Например, 3=e ln3 или 5=5 log 5 5 .

Переходим к применению свойств логарифмов для преобразования выражений.

Пример.

Найдите значение выражения: а) log −2 1 , б) log 1 1 , в) log 0 1 , г) log 7 1 , д) ln1 , е) lg1 , ж) log 3,75 1 , з) log 5·π 7 1 .

Решение.

В примерах под буквами a), б) и в) даны выражения log −2 1 , log 1 1 , log 0 1 , которые не имеет смысла, так как в основании логарифма не должно находиться отрицательное число, нуль или единица, ведь мы определили логарифм лишь для положительного и отличного от единицы основания. Поэтому, в примерах а) - в) не может быть и речи о нахождении значения выражения.

Во всех остальных заданиях, очевидно, в основаниях логарифмов находятся положительные и отличные от единицы числа 7 , e , 10 , 3,75 и 5·π 7 соответственно, а под знаками логарифмов всюду стоят единицы. А нам известно свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 . Таким образом, значения выражений б) – е) равны нулю.

Ответ:

а), б), в) выражения не имеют смысла, г) log 7 1=0 , д) ln1=0 , е) lg1=0 , ж) log 3,75 1=0 , з) log 5·e 7 1=0 .

Пример.

Вычислить: а) , б) lne , в) lg10 , г) log 5·π 3 −2 (5·π 3 −2) , д) log −3 (−3) , е) log 1 1 .

Решение.

Понятно, что нам предстоит воспользоваться свойством логарифма основания, которому отвечает формула log a a=1 при a>0 , a≠1 . Действительно, в заданиях под всеми буквами число под знаком логарифма совпадает с его основанием. Таким образом, хочется сразу сказать, что значение каждого из заданных выражений есть 1 . Однако не стоит торопиться с выводами: в заданиях под буквами а) – г) значения выражений действительно равны единице, а в заданиях д) и е) исходные выражения не имеют смысла, поэтому нельзя сказать, что значения этих выражений равны 1 .

Ответ:

а) , б) lne=1 , в) lg10=1 , г) log 5·π 3 −2 (5·π 3 −2)=1 , д), е) выражения не имеют смысла.

Пример.

Найти значение: а) log 3 3 11 , б) , в) , г) log −10 (−10) 6 .

Решение.

Очевидно, под знаками логарифмов стоят некоторые степени основания. Исходя из этого, понимаем, что здесь нам пригодится свойство степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число. Учитывая это, имеем следующие результаты: а) log 3 3 11 =11 , б) , в) . А можно ли записать аналогичное равенство для примера под буквой г) вида log −10 (−10) 6 =6 ? Нет, нельзя, так как выражение log −10 (−10) 6 не имеет смысла.

Ответ:

а) log 3 3 11 =11 , б) , в) , г) выражение не имеет смысла.

Пример.

Представьте выражение в виде суммы или разности логарифмов по тому же основанию: а) , б) , в) lg((−5)·(−12)) .

Решение.

а) Под знаком логарифма находится произведение, а нам известно свойство логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 . В нашем случае число в основании логарифма и числа в произведении являются положительными, то есть, удовлетворяют условиям выбранного свойства, поэтому, мы его можем спокойно применять: .

б) Здесь воспользуемся свойством логарифма частного , где a>0 , a≠1 , x>0 , y>0 . В нашем случае основание логарифма есть положительное число e , числитель и знаменатель π положительны, значит, удовлетворяют условиям свойства, поэтому мы имеем право на применение выбранной формулы: .

в) Во-первых, заметим, что выражение lg((−5)·(−12)) имеет смысл. Но при этом для него мы не имеем права применять формулу логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 , так как числа −5 и −12 – отрицательные и не удовлетворяют условиям x>0 , y>0 . То есть, нельзя провести такое преобразование: lg((−5)·(−12))=lg(−5)+lg(−12) . А что же делать? В подобных случаях исходное выражение нуждается в предварительном преобразовании, позволяющем уйти от отрицательных чисел. Про подобные случаи преобразования выражений с отрицательными числами под знаком логарифма мы подробно поговорим в одном из , а пока приведем решение этого примера, которое понятно наперед и без объяснений: lg((−5)·(−12))=lg(5·12)=lg5+lg12 .

Ответ:

а) , б) , в) lg((−5)·(−12))=lg5+lg12 .

Пример.

Упростить выражение: а) log 3 0,25+log 3 16+log 3 0,5 , б) .

Решение.

Здесь нам помогут все те же свойства логарифма произведения и логарифма частного, которые мы использовали в предыдущих примерах, только сейчас мы будем их применять справа налево. То есть, сумму логарифмов преобразуем в логарифм произведения, а разность логарифмов – в логарифм частного. Имеем
а) log 3 0,25+log 3 16+log 3 0,5=log 3 (0,25·16·0,5)=log 3 2 .
б) .

Ответ:

а) log 3 0,25+log 3 16+log 3 0,5=log 3 2 , б) .

Пример.

Избавьтесь от степени под знаком логарифма: а) log 0,7 5 11 , б) , в) log 3 (−5) 6 .

Решение.

Несложно заметить, что мы имеем дело с выражениями вида log a b p . Соответствующее свойство логарифма имеет вид log a b p =p·log a b , где a>0 , a≠1 , b>0 , p - любое действительное число. То есть, при выполнении условий a>0 , a≠1 , b>0 от логарифма степени log a b p мы можем переходить к произведению p·log a b . Проведем это преобразование с заданными выражениями.

а) В этом случае a=0,7 , b=5 и p=11 . Так log 0,7 5 11 =11·log 0,7 5 .

б) Здесь , условия a>0 , a≠1 , b>0 выполняются. Поэтому

в) Выражение log 3 (−5) 6 имеет ту же структуру log a b p , a=3 , b=−5 , p=6 . Но для b не выполняется условие b>0 , что делает невозможным применение формулы log a b p =p·log a b . Так что же, нельзя справиться с поставленной задачей? Можно, но требуется предварительное преобразование выражения, о котором мы подробно поговорим ниже в пункте под заголовком . Решение будет таким: log 3 (−5) 6 =log 3 5 6 =6·log 3 5 .

Ответ:

а) log 0,7 5 11 =11·log 0,7 5 ,
б)
в) log 3 (−5) 6 =6·log 3 5 .

Довольно часто формулу логарифма степени при проведении преобразований приходится применять справа налево в виде p·log a b=log a b p (при этом требуется выполнение тех же условий для a , b и p ). Например, 3·ln5=ln5 3 и lg2·log 2 3=log 2 3 lg2 .

Пример.

а) Вычислите значение log 2 5 , если из известно, что lg2≈0,3010 и lg5≈0,6990 . б) Представьте дробь в виде логарифма по основанию 3 .

Решение.

а) Формула перехода к новому основанию логарифма позволяет данный логарифм представить в виде отношения десятичных логарифмов, значения которых нам известны: . Остается лишь провести вычисления, имеем .

б) Здесь достаточно воспользоваться формулой перехода к новому основанию, причем применить ее справа налево, то есть, в виде . Получаем .

Ответ:

а) log 2 5≈2,3223 , б) .

На этом этапе мы достаточно скрупулезно рассмотрели преобразование самых простых выражений с использованием основных свойств логарифмов и определения логарифма. В этих примерах нам приходилось применять какое-то одно свойство и ничего более. Теперь со спокойной совестью можно переходить к примерам, преобразование которых требует использования нескольких свойств логарифмов и других дополнительных преобразований. Ими мы и займемся в следующем пункте. Но перед этим еще вкратце остановимся на примерах применения следствий из основных свойств логарифмов.

Пример.

а) Избавьтесь от корня под знаком логарифма . б) Преобразуйте дробь в логарифм по основанию 5 . в) Освободитесь от степеней под знаком логарифма и в его основании . г) Вычислите значение выражения . д) Замените выражение степенью с основанием 3 .

Решение.

а) Если вспомнить про следствие из свойства логарифма степени , то можно сразу давать ответ: .

б) Здесь воспользуемся формулой справа налево, имеем .

в) В данном случае к результату приводит формула . Получаем .

г) А здесь достаточно применить следствие, которому отвечает формула . Так .

д) Свойство логарифма позволяет нам достичь нужного результата: .

Ответ:

а) . б) . в) . г) . д) .

Последовательное применение нескольких свойств

Реальные задания на преобразование выражений с использованием свойств логарифмов обычно сложнее тех, которыми мы занимались в предыдущем пункте. В них, как правило, результат получается не в один шаг, а решение уже состоит в последовательном применении одного свойства за другим вместе с дополнительными тождественными преобразованиями , такими как раскрытие скобок, приведение подобных слагаемых, сокращении дробей и т.п. Так давайте подбираться ближе к таким примерам. Сложного в этом ничего нет, главное действовать аккуратно и последовательно, соблюдая порядок выполнения действий .

Пример.

Вычислить значение выражения (log 3 15−log 3 5)·7 log 7 5 .

Решение.

Разность логарифмов в скобках по свойству логарифма частного можно заменить логарифмом log 3 (15:5) , и дальше вычислить его значение log 3 (15:5)=log 3 3=1 . А значение выражения 7 log 7 5 по определению логарифма равно 5 . Подставим эти результаты в исходное выражение, получаем (log 3 15−log 3 5)·7 log 7 5 =1·5=5 .

Приведем вариант решения без пояснений:
(log 3 15−log 3 5)·7 log 7 5 =log 3 (15:5)·5=
=log 3 3·5=1·5=5 .

Ответ:

(log 3 15−log 3 5)·7 log 7 5 =5 .

Пример.

Чему равно значение числового выражения log 3 log 2 2 3 −1 ?

Решение.

Преобразуем сначала логарифм, находящийся под знаком логарифма, по формуле логарифма степени: log 2 2 3 =3 . Таким образом, log 3 log 2 2 3 =log 3 3 и дальше log 3 3=1 . Так log 3 log 2 2 3 −1=1−1=0 .

Ответ:

log 3 log 2 2 3 −1=0 .

Пример.

Упростить выражение .

Решение.

Формула перехода к новому основанию логарифма позволяет отношение логарифмов по одному основанию представить как log 3 5 . При этом исходное выражение примет вид . По определению логарифма 3 log 3 5 =5 , то есть , а значение полученного выражения в силу того же определения логарифма равно двум.

Вот краткий вариант решения, который обычно и приводится: .

Ответ:

.

Для плавного перехода к информации следующего пункта давайте взглянем на выражения 5 2+log 5 3 , и lg0,01 . Их структура не подходит ни под одно из свойств логарифмов. Так что же получается, их нельзя преобразовать с использованием свойств логарифмов? Можно, если провести предварительные преобразования, подготавливающие данные выражения к применению свойств логарифмов. Так 5 2+log 5 3 =5 2 ·5 log 5 3 =25·3=75 , и lg0,01=lg10 −2 =−2 . Дальше мы подробно разберемся, как осуществляется подобная подготовка выражений.

Подготовка выражений к применению свойств логарифмов

Логарифмы в составе преобразуемого выражения очень часто по структуре записи отличаются от левых и правых частей формул, отвечающих свойствам логарифмов. Но не менее часто преобразование этих выражений подразумевает использование свойств логарифмов: для их использования лишь требуется предварительная подготовка. А заключается эта подготовка в проведении определенных тождественных преобразований, приводящих логарифмы к виду, удобному для применения свойств.

Справедливости ради, заметим, что в качестве предварительных преобразований могут выступать практически любые преобразования выражений, от банального приведения подобных слагаемых до применения тригонометрических формул. Это и понятно, так как преобразуемые выражения могут содержать какие угодно математические объекты: скобки, модули, дроби, корни, степени и т.д. Таким образом, нужно быть готовым выполнить любое требующееся преобразование, чтобы дальше получить возможность воспользоваться свойствами логарифмов.

Сразу скажем, что в этом пункте мы не ставим перед собой задачу классифицировать и разобрать все мыслимые предварительные преобразования, позволяющие в дальнейшем применить свойства логарифмов или определение логарифма. Здесь мы остановимся лишь на четырех из них, которые наиболее характерны и наиболее часто встречаются на практике.

А теперь подробно о каждом из них, после чего в рамках нашей темы останется лишь разобраться с преобразованием выражений с переменными под знаками логарифмов.

Выделение степеней под знаком логарифма и в его основании

Начнем сразу с примера. Пусть перед нами логарифм . Очевидно, в таком виде его структура не располагает к применению свойств логарифмов. А можно ли как-нибудь преобразовать данное выражение, чтобы упростить его, а еще лучше вычислить его значение? Для ответа на этот вопрос давайте внимательно поглядим на числа 81 и 1/9 в контексте нашего примера. Здесь несложно заметить, что эти числа допускают представление в виде степени числа 3 , действительно, 81=3 4 и 1/9=3 −2 . При этом исходный логарифм представляется в виде и появляется возможность применения формулы . Итак, .

Анализ разобранного примера рождает следующую мысль: при возможности можно попробовать выделить степень под знаком логарифма и в его основании, чтобы применить свойство логарифма степени или его следствия. Остается только выяснить, как эти степени выделять. Дадим некоторые рекомендации по этому вопросу.

Иногда довольно очевидно, что число под знаком логарифма и/или в его основании представляет собой некоторую целую степень, как в рассмотренном выше примере. Практически постоянно приходится иметь дело со степенями двойки, которые хорошо примелькались: 4=2 2 , 8=2 3 , 16=2 4 , 32=2 5 , 64=2 6 , 128=2 7 , 256=2 8 , 512=2 9 , 1024=2 10 . Это же можно сказать и про степени тройки: 9=3 2 , 27=3 3 , 81=3 4 , 243=3 5 , … Вообще, не помешает, если перед глазами будет находиться таблица степеней натуральных чисел в пределах десятка. Также не составляет труда работать с целыми степенями десяти, ста, тысячи и т.д.

Пример.

Вычислить значение или упростить выражение: а) log 6 216 , б) , в) log 0,000001 0,001 .

Решение.

а) Очевидно, что 216=6 3 , поэтому log 6 216=log 6 6 3 =3 .

б) Таблица степеней натуральных чисел позволяет представить числа 343 и 1/243 в виде степеней 7 3 и 3 −4 соответственно. Поэтому возможно следующее преобразование заданного логарифма:

в) Так как 0,000001=10 −6 и 0,001=10 −3 , то log 0,000001 0,001=log 10 −6 10 −3 =(−3)/(−6)=1/2 .

Ответ:

а) log 6 216=3 , б) , в) log 0,000001 0,001=1/2 .

В более сложных случаях для выделения степеней чисел приходится прибегать к .

Пример.

Преобразуйте выражение к более простому виду log 3 648·log 2 3 .

Решение.

Давайте посмотрим, что представляет собой разложение числа 648 на простые множители:

То есть, 648=2 3 ·3 4 . Таким образом, log 3 648·log 2 3=log 3 (2 3 ·3 4)·log 2 3 .

Теперь логарифм произведения преобразуем в сумму логарифмов, после чего применим свойства логарифма степени:
log 3 (2 3 ·3 4)·log 2 3=(log 3 2 3 +log 3 3 4)·log 2 3=
=(3·log 3 2+4)·log 2 3 .

В силу следствия из свойства логарифма степени, которому отвечает формула , произведение log32·log23 представляет собой произведение , а оно, как известно, равно единице. Учитывая это, получаем 3·log 3 2·log 2 3+4·log 2 3=3·1+4·log 2 3=3+4·log 2 3 .

Ответ:

log 3 648·log 2 3=3+4·log 2 3 .

Довольно часто выражения под знаком логарифма и в его основании представляют собой произведения или отношения корней и/или степеней некоторых чисел, например, , . Подобные выражения можно представить в виде степени. Для этого осуществляется переход от корней к степеням , и применяются и . Указанные преобразования позволяют выделить степени под знаком логарифма и в его основании, после чего применить свойства логарифмов.

Пример.

Вычислите: а) , б) .

Решение.

а) Выражение в основании логарифма есть произведение степеней с одинаковыми основаниями, по соответствующему свойству степеней имеем 5 2 ·5 −0,5 ·5 −1 =5 2−0,5−1 =5 0,5 .

Теперь преобразуем дробь под знаком логарифма: перейдем от корня к степени, после чего воспользуемся свойством отношения степеней с одинаковыми основаниями: .

Остается подставить полученные результаты в исходное выражение, воспользоваться формулой и закончить преобразования:

б) Так как 729=3 6 , а 1/9=3 −2 , то исходное выражение можно переписать в виде .

Дальше применяем свойство корня из степени, осуществляем переход от корня к степени и используем свойство отношения степеней, чтобы преобразовать основание логарифма в степень: .

Учитывая последний результат, имеем .

Ответ:

а) , б) .

Понятно, что в общем случае для получения степеней под знаком логарифма и в его основании могут требоваться различные преобразования различных выражений. Приведем пару примеров.

Пример.

Чему равно значение выражения: а) , б) .

Решение.

Дальше отмечаем, что заданное выражение имеет вид log A B p , где A=2 , B=x+1 и p=4 . Числовые выражения подобного вида мы преобразовывали по свойству логарифма степени log a b p =p·log a b , поэтому, с заданным выражением хочется поступить аналогично, и от log 2 (x+1) 4 перейти к 4·log 2 (x+1) . А теперь давайте вычислим значение исходного выражения и выражения, полученного после преобразования, например, при x=−2 . Имеем log 2 (−2+1) 4 =log 2 1=0 , а 4·log 2 (−2+1)=4·log 2 (−1) - не имеющее смысла выражение. Это вызывает закономерный вопрос: «Что мы сделали не так»?

А причина в следующем: мы выполнили преобразование log 2 (x+1) 4 =4·log 2 (x+1) , опираясь на формулу log a b p =p·log a b , но данную формулу мы имеем право применять лишь при выполнении условий a>0 , a≠1 , b>0 , p - любое действительное число. То есть, проделанное нами преобразование имеет место, если x+1>0 , что то же самое x>−1 (для A и p – условия выполнены). Однако в нашем случае ОДЗ переменной x для исходного выражения состоит не только из промежутка x>−1 , но и из промежутка x<−1 . Но для x<−1 мы не имели права осуществлять преобразование по выбранной формуле.

Необходимость учета ОДЗ

Продолжим разбирать преобразование выбранного нами выражения log 2 (x+1) 4 , и сейчас посмотрим, что происходит с ОДЗ при переходе к выражению 4·log 2 (x+1) . В предыдущем пункте мы нашли ОДЗ исходного выражения – это есть множество (−∞, −1)∪(−1, +∞) . Теперь найдем область допустимых значений переменной x для выражения 4·log 2 (x+1) . Она определяется условием x+1>0 , которому отвечает множество (−1, +∞) . Очевидно, что при переходе от log 2 (x+1) 4 к 4·log 2 (x+1) происходит сужение области допустимых значений. А мы договорились избегать преобразований, приводящих к сужению ОДЗ, так как это может приводить к различным негативным последствиям.

Здесь для себя стоит отметить, что полезно контролировать ОДЗ на каждом шаге преобразования и не допускать ее сужения. И если вдруг на каком-то этапе преобразования произошло сужение ОДЗ, то стоит очень внимательно посмотреть, а допустимо ли данное преобразование и имели ли мы право его проводить.

Справедливости ради скажем, что на практике обычно приходится работать с выражениями, у которых ОДЗ переменных такова, что позволяет при проведении преобразований использовать свойства логарифмов без ограничений в уже известном нам виде, причем как слева направо, так и справа налево. К этому быстро привыкаешь, и начинаешь проводить преобразования механически, не задумываясь, а можно ли было их проводить. И в такие моменты, как назло, проскальзывают более сложные примеры, в которых неаккуратное применение свойств логарифмов приводит к ошибкам. Так что нужно всегда быть на чеку, и следить, чтобы не происходило сужения ОДЗ.

Не помешает отдельно выделить основные преобразования на базе свойств логарифмов, которые нужно проводить очень внимательно, которые могут приводить к сужению ОДЗ, и как следствие – к ошибкам:

Некоторые преобразования выражений по свойствам логарифмов могут приводить и к обратному - расширению ОДЗ. Например, переход от 4·log 2 (x+1) к log 2 (x+1) 4 расширяет ОДЗ с множества (−1, +∞) до (−∞, −1)∪(−1, +∞) . Такие преобразования имеют место, если оставаться в рамках ОДЗ для исходного выражения. Так только что упомянутое преобразование 4·log 2 (x+1)=log 2 (x+1) 4 имеет место на ОДЗ переменной x для исходного выражения 4·log 2 (x+1) , то есть, при x+1>0 , что то же самое (−1, +∞) .

Теперь, когда мы обговорили нюансы, на которые нужно обращать внимание при преобразовании выражений с переменными с использованием свойств логарифмов, остается разобраться, как правильно нужно эти преобразования проводить.

X+2>0 . Выполняется ли оно в нашем случае? Для ответа на этот вопрос взглянем на ОДЗ переменной x . Она определяется системой неравенств , которая равносильна условию x+2>0 (при необходимости смотрите статью решение систем неравенств ). Таким образом, мы можем спокойно применять свойство логарифма степени.

Имеем
3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =
=3·7·lg(x+2)−lg(x+2)−5·4·lg(x+2)=
=21·lg(x+2)−lg(x+2)−20·lg(x+2)=
=(21−1−20)·lg(x+2)=0 .

Можно действовать и иначе, благо ОДЗ позволяет это делать, например так:

Ответ:

3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =0 .

А что делать, когда на ОДЗ не выполняются условия, сопутствующие свойствам логарифмов? Будем разбираться с этим на примерах.

Пусть от нас требуется упростить выражение lg(x+2) 4 −lg(x+2) 2 . Преобразование этого выражения, в отличие от выражения из предыдущего примера, не допускает вольготного использования свойства логарифма степени. Почему? ОДЗ переменной x в данном случае представляет собой объединение двух промежутков x>−2 и x<−2 . При x>−2 мы можем спокойно применять свойство логарифма степени и действовать как в разобранном выше примере: lg(x+2) 4 −lg(x+2) 2 =4·lg(x+2)−2·lg(x+2)=2·lg(x+2) . Но ОДЗ содержит еще один промежуток x+2<0 , для которого последнее преобразование будет некорректно. Что же делать при x+2<0 ? В подобных случаях на помощь приходит . Определение модуля позволяет выражение x+2 при x+2<0 представить как −|x+2| . Тогда при x+2<0 от lg(x+2) 4 −lg(x+2) 2 переходим к lg(−|x+2|) 4 −lg(−|x+2|) 2 и дальше в силу свойств степени к lg|x+2| 4 −lg|x+2| 2 . Полученное выражение можно преобразовывать по свойству логарифма степени, так как |x+2|>0 при любых значениях переменной. Имеем lg|x+2| 4 −lg|x+2| 2 =4·lg|x+2|−2·lg|x+2|=2·lg|x+2| . Теперь можно освободиться от модуля, так как он свое дело сделал. Так как мы проводим преобразование при x+2<0 , то 2·lg|x+2|=2·lg(−(x+2)) . Итак, можно считать, что мы справились с поставленной задачей. Ответ: . Полученный результат можно записать компактно с использованием модуля как .

Рассмотрим еще один пример, чтобы работа с модулями стала привычной. Пусть мы задумали от выражения перейти к сумме и разности логарифмов линейных двучленов x−1 , x−2 и x−3 . Сначала находим ОДЗ:

На промежутке (3, +∞) значения выражений x−1 , x−2 и x−3 – положительные, поэтому мы спокойно можем применять свойства логарифма суммы и разности:

А на интервале (1, 2) значения выражения x−1 – положительные, а значения выражений x−2 и x−3 – отрицательные. Поэтому, на рассматриваемом интервале представляем x−2 и x−3 с использованием модуля как −|x−2| и −|x−3| соответственно. При этом

Теперь можно применять свойства логарифма произведения и частного, так как на рассматриваемом интервале (1, 2) значения выражений x−1 , |x−2| и |x−3| - положительные.

Имеем

Полученные результаты можно объединить:

Вообще, аналогичные рассуждения позволяют на базе формул логарифма произведения, отношения и степени получить три практически полезных результата, которыми довольно удобно пользоваться:

  • Логарифм произведения двух произвольных выражений X и Y вида log a (X·Y) можно заменить суммой логарифмов log a |X|+log a |Y| , a>0 , a≠1 .
  • Логарифм частного вида log a (X:Y) можно заменить разностью логарифмов log a |X|−log a |Y| , a>0 , a≠1 , X и Y – произвольные выражения.
  • От логарифма некоторого выражения B в четной степени p вида log a B p можно перейти к выражению p·log a |B| , где a>0 , a≠1 , p – четное число и B – произвольное выражение.

Аналогичные результаты приведены, например, в указаниях к решению показательных и логарифмических уравнений в сборнике задач по математике для поступающих в вузы под редакцией М. И. Сканави .

Пример.

Упростите выражение .

Решение.

Было бы хорошо применить свойства логарифма степени, суммы и разности. Но можем ли мы здесь это делать? Для ответа на этот вопрос нам требуется знать ОДЗ.

Определим ее:

Довольно очевидно, что выражения x+4 , x−2 и (x+4) 13 на области допустимых значений переменной x могут принимать как положительные, так и отрицательные значения. Поэтому нам придется действовать через модули.

Свойства модуля позволяют переписать как , поэтому

Также ничто не мешает воспользоваться свойством логарифма степени, после чего привести подобные слагаемые:

К такому же результату приводит и другая последовательность преобразований:

и так как на ОДЗ выражение x−2 может принимать как положительные, так и отрицательные значения, то при вынесении четного показателя степени 14


Сейчас мы взглянем на преобразование выражений, содержащих логарифмы, с общих позиций. Здесь мы разберем не только преобразование выражений с использованием свойств логарифмов, а рассмотрим преобразование выражений с логарифмами общего вида, которые содержат не только логарифмы, но и степени, дроби, корни и т.д. Весь материал по обыкновению будем снабжать характерными примерами с детальными описаниями решений.

Навигация по странице.

Выражения с логарифмами и логарифмические выражения

Выполнение действий с дробями

В предыдущем пункте мы разобрали основные преобразования, которые проводятся с отдельными дробями, содержащими логарифмы. Эти преобразования, естественно, можно проводить с каждой отдельной дробью, являющейся частью более сложного выражения, например, представляющего собой сумму, разность, произведение и частное подобных дробей. Но помимо работы с отдельными дробями, преобразование выражений указанного вида часто подразумевает выполнение соответствующих действий с дробями. Дальше мы рассмотрим правила, по которым эти действия проводятся.

Еще с 5-6 классов нам известны правила, по которым выполняются . В статье общий взгляд на действия с дробями мы распространили эти правила с обыкновенных дробей на дроби общего вида A/B , где A и B – некоторые числовые, буквенные выражения или выражения с переменными, причем B тождественно не равно нулю. Понятно, что дроби с логарифмами являются частными случаями дробей общего вида. И в связи с этим понятно, что действия с дробями, которые содержат в своих записях логарифмы, проводятся по тем же правилам. А именно:

  • Чтобы сложить или вычесть две дроби с одинаковыми знаменателями, надо соответственно сложить или вычесть числители, а знаменатель оставить прежним.
  • Чтобы сложить или вычесть две дроби с разными знаменателями, надо привести их к общему знаменателю и выполнить соответствующие действия по предыдущему правилу.
  • Чтобы умножить две дроби, надо записать дробь, числителем которой является произведение числителей исходных дробей, а знаменателем – произведение знаменателей.
  • Чтобы разделить дробь на дробь, надо делимую дробь умножить на дробь, обратную делителю, то есть, на дробь, с переставленными местами числителем и знаменателем.

Приведем несколько примеров на выполнение действий с дробями, содержащими логарифмы.

Пример.

Выполните действия с дробями, содержащими логарифмы: а) , б) , в) , г) .

Решение.

а) Знаменатели складываемых дробей, очевидно, одинаковые. Поэтому, согласно правилу сложения дробей с одинаковыми знаменателями складываем числители, а знаменатель оставляем прежним: .

б) Здесь знаменатели различные. Поэтому, сначала нужно привести дроби к одинаковому знаменателю . В нашем случае знаменатели уже представлены в виде произведений, и нам остается взять знаменатель первой дроби и добавить к нему недостающие множители из знаменателя второй дроби. Так мы получим общий знаменатель вида . При этом к общему знаменателю вычитаемые дроби приводятся при помощи дополнительных множителей в виде логарифма и выражения x 2 ·(x+1) соответственно. После этого останется выполнить вычитание дробей с одинаковыми знаменателями, что не представляет сложностей.

Итак, решение таково:

в) Известно, что результатом умножения дробей является дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей, поэтому

Несложно заметить, что можно провести сокращение дроби на двойку и на десятичный логарифм, в результате имеем .

г) Переходим от деления дробей к умножению, заменяя дробь-делитель обратной ей дробью . Так

Числитель полученной дроби можно представить в виде , из которого явно виден общий множитель числителя и знаменателя – множитель x , на него можно сократить дробь:

Ответ:

а) , б) , в) , г) .

Следует помнить, что действия с дробями проводятся с учетом порядка выполнения действий : сначала умножение и деление, затем сложение и вычитание, а если есть скобки, то сначала проводятся действия в скобках.

Пример.

Выполните действия с дробями .

Решение.

Сначала выполняем сложение дробей в скобках, после чего будем проводить умножение:

Ответ:

В этом пункте остается проговорить вслух три довольно очевидных, но в то же время важных момента:

Преобразование выражений с использованием свойств логарифмов

Наиболее часто преобразование выражений с логарифмами подразумевает использование тождеств, выражающих определение логарифма и . Например, обратившись к основному логарифмическому тождеству a log a b =b , a>0 , a≠1 , b>0 , мы можем выражение x−5 log 5 7 представить в виде x−7 , а формула перехода к новому основанию логарифма , где a>0 , a≠1 , b>0 , c>0 , c≠1 дает возможность от выражения перейти к разности 1−lnx .

Применение свойств корней, степеней, тригонометрических тождеств и т.п.

Выражения с логарифмами помимо, собственно, самих логарифмов почти всегда содержат степени, корни, тригонометрические функции и т.п. Понятно, что для преобразования таких выражений наряду со свойствами логарифмов могут потребоваться свойства степеней, корней и т.д. Мы отдельно разбирали применение каждого блока свойств к преобразованию выражений, ссылки на соответствующие статьи Вы можете найти в разделе сайта www.сайт выражения и их преобразование . Здесь же мы покажем решение пары примеров на применение свойств в связке с логарифмами.

Пример.

Упростить выражение .

Решение.

Для начала выполним преобразование выражений с корнями . На ОДЗ переменной x для исходного выражения (которой в нашем случае является множество положительных действительных чисел) от корней можно перейти к степеням с дробными показателями, после чего воспользоваться свойством умножения степеней с одинаковыми основаниями: . Таким образом,

Теперь представляем числитель в виде (что нам позволяет сделать свойство степени в степени, при необходимости смотрите преобразование выражений с использованием свойств степеней , а также представление числа, которое позволяет заменить сумму квадратов синуса и косинуса одного и того же аргумента единицей. Так мы получим единицу под знаком логарифма. А, как известно, логарифм единицы равен нулю.

Запишем проделанные преобразования:

Нуль в кубе есть нуль, поэтому переходим к выражению .

Дробь, числитель которой есть нуль, а знаменатель отличен от нуля (в нашем случае это действительно так, ведь несложно обосновать, что значение выражения под знаком натурального логарифма отлично от единицы) равна нулю. Таким образом,

Дальнейшие преобразования проводятся на базе определения корня нечетной степени из отрицательного числа: .

Так как 2 15 – положительное число, то можно применить свойства корней, которые приводят к финальному результату: .

Ответ:

Область допустимых значений (ОДЗ) логарифма

Теперь поговорим об ограничениях (ОДЗ - область допустимых значений переменных).

Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:

То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться.

Почему так?

Начнем с простого: допустим, что. Тогда, например, число не существует, так как в какую бы степень мы не возводили, всегда получается. Более того, не существует ни для какого. Но при этом может равняться чему угодно (по той же причине - в любой степени равно). Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.

Похожая проблема у нас и в случае: в любой положительной степени - это, а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что).

При мы столкнемся с проблемой возведения в дробную степень (которая представляется в виде корня: . Например, (то есть), а вот не существует.

Поэтому и отрицательные основания проще выбросить, чем возиться с ними.

Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).

В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:

Решим уравнение.

Вспомним определение: логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент. И по условию, эта степень равна: .

Получаем обычное квадратное уравнение: . Решим его с помощью теоремы Виета: сумма корней равна, а произведение. Легко подобрать, это числа и.

Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?

Это явно неверно, так как основание не может быть отрицательным, то есть корень - «сторонний».

Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:

Тогда, получив корни и, сразу отбросим корень, и напишем правильный ответ.

Пример 1 (попробуй решить самостоятельно):

Найдите корень уравнения. Если корней несколько, в ответе укажите меньший из них.

Решение:

В первую очередь напишем ОДЗ:

Теперь вспоминаем, что такое логарифм: в какую степень нужно возвести основание, чтобы получить аргумент? Во вторую. То есть:

Казалось бы, меньший корень равен. Но это не так: согласно ОДЗ корень - сторонний, то есть это вообще не корень данного уравнения. Таким образом, уравнение имеет только один корень: .

Ответ: .

Основное логарифмическое тождество

Вспомним определение логарифма в общем виде:

Подставим во второе равенство вместо логарифм:

Это равенство называется основным логарифмическим тождеством . Хотя по сути это равенство - просто по-другому записанное определение логарифма :

Это степень, в которую нужно возвести, чтобы получить.

Например:

Реши еще следующие примеры:

Пример 2.

Найдите значение выражения.

Решение:

Вспомним правило из раздела : , то есть, при возведении степени в степень показатели перемножаются. Применим его:

Пример 3.

Докажите, что.

Решение:

Свойства логарифмов

К сожалению, задачи не всегда такие простые - зачастую сперва нужно упростить выражение, привести его к привычному виду, и только потом будет возможно посчитать значение. Это проще всего сделать, зная свойства логарифмов . Так что давай выучим основные свойства логарифмов. Каждое из них я буду доказывать, ведь любое правило проще запомнить, если знать, откуда оно берется.

Все эти свойства нужно обязательно запомнить, без них большинство задач с логарифмами решить не получится.

А теперь обо всех свойствах логарифмов подробнее.

Свойство 1:

Доказательство:

Пусть, тогда.

Имеем: , ч.т.д.

Свойство 2: Сумма логарифмов

Сумма логарифмов с одинаковыми основаниями равна логарифму произведения: .

Доказательство:

Пусть, тогда. Пусть, тогда.

Пример: Найдите значение выражения: .

Решение: .

Только что выученная формула помогает упростить сумму логарифмов, а не разность, так что сразу эти логарифмы не объединить. Но можно сделать наоборот - «разбить» первый логарифм на два:А вот обещанное упрощение:
.
Зачем это нужно? Ну например: чему равно?

Теперь очевидно, что.

Теперь упрости сам:

Задачи:

Ответы:

Свойство 3: Разность логарифмов:

Доказательство:

Все точно так же, как и в пункте 2:

Пусть, тогда.

Пусть, тогда. Имеем:

Пример из прошлого пункта теперь становится еще проще:

Пример посложнее: . Догадаешься сам, как решить?

Здесь нужно заметить, что у нас нету ни одной формулы про логарифмы в квадрате. Это что-то сродни выражению - такое сразу не упростить.

Поэтому отвлечемся от формул про логарифмы, и подумаем, какие вообще формулы мы используем в математике чаще всего? Еще начиная с 7 класса!

Это - . Нужно привыкнуть к тому, что они везде! И в показательных, и в тригонометрических, и в иррациональных задачах они встречаются. Поэтому их нужно обязательно помнить.

Если присмотреться к первым двум слагаемым, становится ясно, что это разность квадратов :

Ответ для проверки:

Упрости сам.

Примеры

Ответы.

Свойство 4: Вынесение показателя степени из аргумента логарифма:

Доказательство: И здесь тоже используем определение логарифма:пусть, тогда. Имеем: , ч.т.д.

Можно понять это правило так:

То есть степень аргумента выносится вперед логарифма, как коэффициент.

Пример: Найдите значение выражения.

Решение: .

Реши сам:

Примеры:

Ответы:

Свойство 5: Вынесение показателя степени из основания логарифма:

Доказательство: Пусть, тогда.

Имеем: , ч.т.д.
Запоминаем: из основания степень выносится как обратное число, в отличии от предыдущего случая!

Свойство 6: Вынесение показателя степени из основания и аргумента логарифма:

Или если степени одинаковые: .

Свойство 7: Переход к новому основанию:

Доказательство: Пусть, тогда.

Имеем: , ч.т.д.

Свойство 8: Замена местами основания и аргумента логарифма:

Доказательство: Это частный случай формулы 7: если подставить, получим: , ч.т.д.

Рассмотрим еще несколько примеров.

Пример 4.

Найдите значение выражения.

Используем свойство логарифмов № 2 - сумма логарифмов с одинаковым основанием равна логарифму произведения:

Пример 5.

Найдите значение выражения.

Решение:

Используем свойство логарифмов № 3 и № 4:

Пример 6.

Найдите значение выражения.

Решение:

Используем свойство № 7 - перейдем к основанию 2:

Пример 7.

Найдите значение выражения.

Решение:

Как тебе статья?

Если ты читаешь эти строки, значит ты прочитал всю статью.

И это круто!

А теперь расскажи нам как тебе статья?

Научился ты решать логарифмы? Если нет, то в чем проблема?

Пиши нам в комментах ниже.

И, да, удачи на экзаменах.

На ЕГЭ и ОГЭ и вообще в жизни

Задания, решение которых заключается в преобразовании логарифмических выражений , довольно часто встречаются на ЕГЭ.

Чтобы успешно справиться с ними при минимальной затрате времени кроме основных логарифмических тождеств, необходимо знать и правильно использовать ещё некоторые формулы.

Это: a log а b = b, где а, b > 0, а ≠ 1 (Она вытекает непосредственно из определения логарифма).

log a b = log с b / log с а или log а b = 1/log b а
где а, b, с > 0; а, с ≠ 1.

log а m b n = (m/n) log |а| |b|
где а, b > 0, а ≠ 1, m, n Є R, n ≠ 0.

а log с b = b log с а
где а, b, с > 0 и а, b, с ≠ 1

Чтобы показать справедливость четвертого равенства прологарифмируем левую и правую часть по основанию а. Получим log а (а log с b) = log а (b log с а) или log с b = log с а · log а b; log с b = log с а · (log с b / log с а); log с b = log с b.

Мы доказали равенство логарифмов, значит, равны и выражения, стоящие под логарифмами. Формула 4 доказана.

Пример 1.

Вычислите 81 log 27 5 log 5 4 .

Решение.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Следовательно,

log 27 5 · log 5 4 = 1/3 log 3 5 · (log 3 4 / log 3 5) = 1/3 log 3 4.

Тогда 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

Самостоятельно можно выполнить следующее задание.

Вычислить (8 log 2 3 + 3 1/ log 2 3) - log 0,2 5.

В качестве подсказки 0,2 = 1/5 = 5 -1 ; log 0,2 5 = -1.

Ответ: 5.

Пример 2.

Вычислите (√11) log √3 9- log 121 81 .

Решение.

Выполним замену выражений: 9 = 3 2 , √3 = 3 1/2 , log √3 9 = 4,

121 = 11 2 , 81 = 3 4 , log 121 81 = 2 log 11 3 (использовалась формула 3).

Тогда (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / (11 log 11 3) = 121/3.

Пример 3.

Вычислите log 2 24/ log 96 2- log 2 192 / log 12 2.

Решение.

Логарифмы, содержащиеся в примере, заменим логарифмами с основанием 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 · 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

log 2 192 = log 2 (2 6 · 3) = (log 2 2 6 + log 2 3) = (6 + log 2 3);

log 2 24 = log 2 (2 3 · 3) = (log 2 2 3 + log 2 3) = (3 + log 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 · 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Тогда log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/(2 + log 2 3)) =

= (3 + log 2 3) · (5 + log 2 3) – (6 + log 2 3)(2 + log 2 3).

После раскрытия скобок и приведения подобных слагаемых получим число 3. (При упрощении выражения можно log 2 3 обозначить через n и упрощать выражение

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Ответ: 3.

Самостоятельно можно выполнить следующее задание:

Вычислить (log 3 4 + log 4 3 + 2) · log 3 16 · log 2 144 3 .

Здесь необходимо сделать переход к логарифмам по основанию 3 и разложение на простые множители больших чисел.

Ответ:1/2

Пример 4.

Даны три числа А = 1/(log 3 0,5), В = 1/(log 0,5 3), С = log 0,5 12 – log 0,5 3. Расположите их в порядке возрастания.

Решение.

Преобразуем числа А = 1/(log 3 0,5) = log 0,5 3; С = log 0,5 12 – log 0,5 3 = log 0,5 12/3 = log 0,5 4 = -2.

Сравним их

log 0,5 3 > log 0,5 4 = -2 и log 0,5 3 < -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Или -2 < log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Ответ. Следовательно, порядок размещения чисел: С; А; В.

Пример 5.

Сколько целых чисел расположено на интервале (log 3 1 / 16 ; log 2 6 48).

Решение.

Определим между какими степенями числа 3 находится число 1 / 16 . Получим 1 / 27 < 1 / 16 < 1 / 9 .

Так как функция у = log 3 х – возрастающая, то log 3 (1 / 27) < log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 · 4 / 3) = log 6 36 + log 6 (4 / 3) = 2 + log 6 (4 / 3). Сравним log 6 (4 / 3) и 1 / 5 . А для этого сравним числа 4 / 3 и 6 1/5 . Возведём оба числа в 5 степень. Получим (4 / 3) 5 = 1024 / 243 = 4 52 / 243 < 6. Следовательно,

log 6 (4 / 3) < 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Следовательно, интервал (log 3 1 / 16 ; log 6 48) включает в себя промежуток [-2; 4] и на нём размещаются целые числа -2; -1; 0; 1; 2; 3; 4.

Ответ: 7 целых чисел.

Пример 6.

Вычислите 3 lglg 2/ lg 3 - lg20.

Решение.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Тогда 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0,1 = -1.

Ответ: -1.

Пример 7.

Известно, что log 2 (√3 + 1) + log 2 (√6 – 2) = А. Найдите log 2 (√3 –1) + log 2 (√6 + 2).

Решение.

Числа (√3 + 1) и (√3 – 1); (√6 – 2) и (√6 + 2) – сопряжённые.

Проведем следующее преобразование выражений

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Тогда log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – А.

Ответ: 2 – А.

Пример 8 .

Упростите и найдите приближенное значение выражения (log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9.

Решение.

Все логарифмы приведём к общему основанию 10.

(log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9 = (lg 2 / lg 3) · (lg 3 / lg 4)· (lg 4 / lg 5) · (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0,3010. (Приближенное значение lg 2 можно найти с использованием таблицы, логарифмической линейки либо калькулятора).

Ответ: 0,3010.

Пример 9 .

Вычислить log а 2 b 3 √(a 11 b -3), если log √ а b 3 = 1. (В этом примере, а 2 b 3 – основание логарифма).

Решение.

Если log √ а b 3 = 1, то 3/(0,5 log а b = 1. И log а b = 1/6.

Тогда log а 2 b 3√(a 11 b -3) = 1/2 log а 2 b 3 (a 11 b -3) = log а (a 11 b -3) / (2log а (a 2 b 3)) = (log а a 11 + log а b -3) / (2(log а a 2 + log а b 3)) = (11 – 3log а b) / (2(2 + 3log а b)) Учитывая то, что log а b = 1/6 получим (11 – 3 · 1 / 6) / (2(2 + 3 · 1 / 6)) = 10,5/5 = 2,1.

Ответ: 2,1.

Самостоятельно можно выполнить следующее задание:

Вычислить log √3 6 √2,1, если log 0,7 27 = а.

Ответ: (3 + а) / (3а).

Пример 10.

Вычислить 6,5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Решение.

6,5 4/ log 3 169 · 3 1/ log 4 13 + log 125 = (13/2) 4/2 log 3 13 · 3 2/ log 2 13 + 2log 5 5 3 = (13/2) 2 log 13 3 · 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3 2 /(2 log 13 3) 2) · (2 log 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (формула 4))

Получим 9 + 6 = 15.

Ответ: 15.

Остались вопросы? Не знаете, как найти значение логарифмического выражения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.