Десятичный логарифм 1 5. Свойства логарифмов и примеры их решений. Исчерпывающий гид (2020). Область определения, множество значений, возрастание, убывание

Из программы средней школы известно, что

любое положительное число можно представить как число 10 в какой-то степени.

Однако это просто в том случае, когда число кратно 10.
Пример :

  • число 100 − это 10х10 или 102
  • число 1000 −это 10х10х10 или 103
  • и т.д.

Как же быть в том случае, если, например, надо выразить число 8299 как число 10 в какой-то степени? Как найти это число с определённой степенью точности, которое в данном случае равно 3,919…?

Выход - это логарифм и логарифмические таблицы

Знание логарифмов и умение пользоваться логарифмическими таблицами позволяет значительно упростить многие сложные арифметические операции.Для практического применения удобны десятичные логарифмы.

Историческая справка .
Принцип, лежащий в основе любой системы логарифмов, известен очень давно и может быть прослежен вглубь истории вплоть до древневавилонской математики (около 2000 года до н.э.). Однако первые таблицы логарифмов составили независимо друг от друга шотландский математик HUДж. Непер (1550—1617) U Hи швейцарец И. Бюрги (1552—1632). Первые таблицы десятичных логарифмов были составлены и опубликованы английским математиком Г. Бриггсом (1561 —1630).

Предлагаем читателю, не вдаваясь глубоко в математическую суть вопроса, запомнить или восстановить в памяти несколько простейших определений, выводов и формул:

  • Определение логарифм а.

Логарифмом данного числа называется показатель степени, в которую нужно возвести другое число, называемое основанием логарифма (а ), чтобы получить данное число.

  • При всяком основании, логарифм единицы есть нуль:

а0 = 1

  • Отрицательные числа не имеют логарифмов
  • Всякое положительное число имеет логарифм
  • При основании, большем 1, логарифмы чисел, меньших 1, отрицательны, а логарифмы чисел, больших 1, положительны
  • Логарифм основания равен 1
  • Большему числу соответствует больший логарифм
  • С возрастанием числа от 0 до 1 логарифм его возрастает от - до 0; с возрастанием числа от 1 до + логарифм его возрастает от 1 до + (где, ± − знак, принятый в математике для обозначения отрицательной или положительной бесконечности чисел)
  • Для практического применения удобны логарифмы, основанием которых является число10

Эти логарифмы называются десятичными и обозначаются lg . Например:

            • логарифм числа 10 по основанию 10 равен 1. Иначе говоря, число 10 нужно возвести в первую степень, чтобы получить число 10 (101 = 10), т.е. lg10 = 1
            • логарифм числа 100 по основанию 10 равен 2. Иначе говоря, число 10 нужно возвести в квадрат, чтобы получить число 100 (102 = 100),т.е. lg100 = 2

UВывод №1 U: логарифм целого числа, изображаемого единицей с нулями, есть целое положительное число, содержащее столько единиц, сколько нулей в изображении числа

            • логарифма числа 0,1 по основанию 10 равен -1. Иначе говоря, число 10 нужно возвести в минус первую степень, чтобы получить число 0,1 (10-1 = 0,1), т.е. lg0,1 = -1
            • логарифма числа 0,01 по основанию 10 равен -2. Иначе говоря, число 10 нужно возвести в минус вторую степень, чтобы получить число 0,1 (10-2 = 0,01), т.е. lg0,01 = -2

UВывод №2 U: логарифм десятичной дроби, изображаемой единицею с предшествующими нулями, есть целое отрицательное число содержащее столько отрицательных единиц, сколько нулей в изображении дроби, считая, в том числе, и 0 целых

            • в соответствии с определением №1 (см. выше):

lg1 = 0

            • логарифм числа 8300 по основанию 10 равен 3,9191… Иначе говоря, число 10 нужно возвести в степень 3,9191… , чтобы получить число 8300 (103,9191…= 8300), т.е. lg8300 =3,9191…

UВывод №3 U: логарифма числа, не выраженного единицей с нулями, есть число иррациональное и, следовательно, не может быть выражен точно посредством цифр.
Обыкновенно иррациональные логарифмы выражают приближенно в виде десятичной дроби с несколькими десятичными знаками. Целое число этой дроби (хотя бы это было „0 целых") называется характеристикой , а дробная часть — мантиссой логарифма. Если, например, логарифм есть 1,5441 , то характеристика его равна 1 , а мантисса есть 0,5441 .

      • Основные свойства логарифмов, в т.ч. десятичных:
        • логарифм произведения равен сумме логарифмов сомножителей: lg( a. b)= lgа + lgb
        • логарифм частного равен логарифму делимого без логарифма делителя, т.е. логарифм дроби равен логарифму числителя без логарифма знаменателя:
        • логарифмы двух взаимообратных чисел по одному и тому же основанию отличаются друг от друга только знаком
        • логарифм степени равен произведению показателя степени на логарифм её основания, т.е. логарифм степени равен показателю этой степени, умноженному на логарифм возводимого в степень числа:

lg( bk)= k. lg b

Чтобы окончательно понять, что такое десятичный логарифм произвольного числа, детально рассмотрим несколько примеров.

UПример №2.1.1 U.
Возьмем какое-нибудь целое, например 623 и смешанное число, например 623,57.
Мы знаем, что логарифм числа состоит из характеристики и мантиссы.
Сосчитаем, сколько цифр в данном целом числе, или в целой части смешанного числа. В наших примерах этих цифр 3.
Поэтому каждое из чисел 623 и 623,57 больше 100, но меньше 1000.
Таким образом можно сделать вывод, что логарифм каждого из этих чисел будет больше lg 100, т. е. больше 2, но меньше lg 1000, т. е. меньше 3 (вспомним, что большее число имеет и больший логарифм).
Следовательно:
lg 623 = 2,...
lg 623,57 = 2,...
(точки заменяют собою неизвестные мантиссы).

UВывод №4 U: десятичные логарифмы обладают тем удобством, что их характеристику всегда можно найти по одному виду числа .

Пусть вообще в данном целом числе, или в целой части данного смешанного числа, содержится m цифр. Так как самое малое целое число, содержащее m цифр, есть единица с m-1 нулями на конце, то (обозначая данное число N) можем написать неравенство:


следовательно,
m-1 < lg N < m,
поэтому
lg N = (m-1) + положительная дробь.
значит
характеристика lgN = m-1

UВывод №5 U: характеристика десятичного логарифма целого или смешанного числа содержит столько положительных единиц, сколько цифр в целой части числа без одной.

UПример №2.1.2.

Теперь возьмём несколько десятичных дробей, т.е. чисел меньших 1 (другими словами имеющих 0 целых):
0,35; 0,07; 0,0056; 0,0008 и т. п.
Логарифмы каждого из этих чисел будут находиться в промежутке между двумя целыми отрицательными числами, различающимися на одну единицу. Причём каждый из них равен меньшему из этих отрицательных чисел, увеличенному на некоторую положительную дробь.
Например,
lg0,0056= -3 + положительная дробь
В данном случае положительная дробь будет равна 0,7482.
Тогда:
lg 0,0056 = -3 + 0,7482
UПримечания U:
Такие суммы, как -3 + 0,7482, состоящие из целого отрицательного числа и положительной десятичной дроби, условились при логарифмических вычислениях писать сокращенно так:
,7482
(такое число читается: с минусом, 7482 десятитысячных), т. е. ставят знак минус над характеристикой с целью показать, что он относится только к этой характеристике, а не к мантиссе, которая остается положительной.

Таким образом, приведенные выше числа можно записать в виде десятичных логарифмов
lg 0,35 =, …
lg 0,07 =, …
lg 0,00008 =, …
Пусть вообще число A есть десятичная дробь, у которой перед первой значащей цифрой α стоит m нулей, считая, в том числе, и 0 целых:

тогда, очевидно, что

Следовательно:

т. е.
-m < log A < -(m-1).
Так как из двух целых чисел:
-m и -(m-1) меньшее есть -m
то
lg А = -m + положительная дробь

UВывод №6 U: характеристика логарифма десятичной дроби, т.е. числа меньшего 1, содержит в себе столько отрицательных единиц, сколько нулей в изображении десятичной дроби перед первой значащей цифрой, считая, в том числе, и нуль целых; мантисса же такого логарифма положительна

Пример №2.1.3.

Умножим какое-нибудь число N (целое или дробное — всe равно) на 10, на 100 на 1000..., вообще на 1 c нулями, и посмотрим, как от этого изменится lg N.
Так как логарифм произведения равен сумме логарифмов сомножителей, то
lg (N.10) = lg N + lg 10 = lg N + 1;
lg (N.100) = lg N + lg 100 = lg N + 2;
lg (N.1000) = lg N + lg 1000 = lg N + 3 и т. д.

Когда к lg N мы прибавляем какое-нибудь целое число, то это число всегда прибавляется к характеристике; при этом мантисса всегда остаётся в этих случаях неизменной.

Пример
если lg N = 2,7804, то 2,7804 + 1 =3,7804; 2,7804 + 2 = 4,7801 и т. п.;
или если lg N = 3,5649, то 3,5649 + 1 = 2,5649; 3,5649 - 2 = 1,5649, и т. п.

Вывод №7 : от умножения числа на 10, 100, 1000,.., вообще на 1 с нулями, мантисса логарифма не изменяется, а характеристика увеличивается на столько единиц, сколько нулей во множителе.

Подобно этому, приняв во внимание, что логарифм частного равен логарифму делимого без логарифма делителя, мы получим:
lg N/10 = lg N - lg 10 = lg N - 1;
lg N/100 = log N - log 100 = log N - 2;
log N/1000 = log N - log 1000 = log N - 3 и т. п.
Когда из lg N вычитается целое число из логарифма вычитать это целое число всегда следует из характеристики, а мантиссу оставлять без изменения. то можно сказать:

Вывод №8 : От деления числа на 1 с нулями мантисса логарифма не изменяется, а характеристика уменьшается на столько единиц, сколько нулей в делителе.

Вывод №9 : мантисса логарифма десятичного числа не изменяется от перенесения в числе запятой, потому что перенесение запятой равносильно умножению или делению на 10, 100, 1000 и т. д.

Таким образом, логарифмы чисел:
0,00423, 0,0423, 4,23, 423
отличаются только характеристиками, но не мантиссами (при условии, что все мантиссы положительны).

Вывод №9 : мантиссы чисел, имеющих одну и ту же значащую часть, но отличающихся только нулями на конце, одинаковы: так, логарифмы чисел: 23, 230, 2300, 23 000 отличаются только характеристиками.

Степень отдельно взятого числа называется математическим термином, придуманным несколько столетий назад. В геометрии и алгебре встречается два варианта - десятичные и натуральные логарифмы. Они рассчитываются разными формулами, при этом уравнения, отличающиеся написанием, всегда равны друг другу. Это тождество характеризует свойства, которые относятся к полезному потенциалу функции.

Особенности и важные признаки

На данный момент различают десять известных математических качеств. Самыми распространенными и востребованными из них являются:

  • Подкоренной log, разделенный на величину корня, всегда такой же, как и десятичный логарифм √.
  • Произведение log всегда равно сумме производителя.
  • Lg = величине степени, перемноженной на число, которое в нее возводится.
  • Если от log делимого отнять делитель, получится lg частного.

Кроме того, есть уравнение, основанное на главном тождестве (считается ключевым), переход к обновленному основанию и несколько второстепенных формул.

Вычисление десятичного логарифма - довольно специфическая задача, поэтому к интегрированию свойств в решение необходимо подходить осторожно и регулярно проверять свои действия и последовательность. Нельзя забывать и о таблицах, с которыми нужно постоянно сверяться, и руководствоваться только найденными там данными.

Разновидности математического термина

Главные отличия математического числа «спрятаны» в основании (a). Если оно имеет показатель 10, то это десятичный log. В обратном случае «a» преобразуется в «у» и обладает трансцендентными и иррациональными признаками. Также стоит отметить, что натуральная величина рассчитывается специальным уравнением, где доказательством становится теория, изучаемая за пределами школьной программы старших классов.

Логарифмы десятичного типа получили широкое применение при вычислении сложных формул. Составлены целые таблицы, облегчающие расчеты и наглядно показывающие процесс решения задачи. При этом перед непосредственным переходом к делу нужно возвести log в К тому же в каждом магазине школьных принадлежностей можно найти специальную линейку с нанесенной шкалой, помогающей решить уравнение любой сложности.

Десятичный логарифм числа называется Бригговым, или цифрой Эйлера, в честь исследователя, который первым опубликовал величину и обнаружил противопоставление двух определений.

Два вида формулы

Все типы и разновидности задач на вычисление ответа, имеющие в условии термин log, обладают отдельным названием и строгим математическим устройством. Показательное уравнение является практически точной копией логарифмических расчетов, если смотреть со стороны правильности решения. Просто первый вариант включает в себя специализированное число, помогающее быстрее разобраться в условии, а второй заменяет log на обыкновенную степень. При этом вычисления с применением последней формулы должны включать в себя переменное значение.

Разница и терминология

Оба главных показателя обладают собственными особенностями, отличающими числа друг от друга:

  • Десятичный логарифм. Важная деталь числа - обязательное наличие основания. Стандартный вариант величины равен 10. Маркируется последовательностью - log x или lg x.
  • Натуральный. Если его основанием является знак «e», представляющий собой константу, идентичную строго рассчитанному уравнению, где n стремительно движется к бесконечности, то приблизительный размер числа в цифровом эквиваленте составляет 2.72. Официальная маркировка, принятая как в школьных, так и в более сложных профессиональных формулах, - ln x.
  • Разные. Кроме основных логарифмов встречаются шестнадцатиричные и двоичные виды (основание 16 и 2 соответственно). Есть еще сложнейший вариант с базовым показателем 64, подпадающий под систематизированное управление адаптивного типа, с геометрической точностью производящее расчет итогового результата.

Терминология включает в себя следующие величины, входящие в алгебраическую задачу:

  • значение;
  • аргумент;
  • основание.

Вычисление log числа

Есть три способа быстро и в устной форме сделать все необходимые расчеты по нахождению интересующего результата с обязательным правильным итогом решения. Изначально приближаем десятичный логарифм к своему порядку (научная запись числа в степени). Каждую положительную величину можно задать уравнением, где она будет равен мантиссе (цифра от 1 до 9), перемноженной на десятку в n-й степени. Такой вариант подсчета создан на основе двух математических фактов:

  • произведение и сумма log всегда имеют одинаковый показатель;
  • логарифм, взятый из числа от одного до десяти, не может превышать величину в 1 пункт.
  1. Если ошибка в вычислении все-таки происходит, то она никогда не бывает меньше одного в сторону вычитания.
  2. Точность повышается, если учесть, что lg с основанием три имеет итоговый результат - пять десятых от единицы. Поэтому любое математическое значение больше 3 автоматически добавляет к ответу один пункт.
  3. Практически идеальная точность достигается, если под рукой есть специализированная таблица, которую можно легко применять в своих оценочных действиях. С ее помощью можно выяснить, чему равен десятичный логарифм до десятых процентов от оригинального числа.

История вещественного log

Шестнадцатый век остро испытывал потребности в более сложных исчислениях, чем было известно науке того времени. Особенно это касалось деления и умножения многозначных цифр с большой последовательностью, в том числе дробей.

В конце второй половины эпохи сразу несколько умов пришли к выводу о сложении чисел с помощью таблицы, которая сопоставляла две и геометрическую. При этом все базовые расчеты должны были упираться в последнюю величину. Таким же образом ученые интегрировали и вычитание.

Первое упоминание об lg состоялось в 1614 году. Это сделал любитель-математик по фамилии Непер. Стоит отметить, что, несмотря на огромную популяризацию полученных результатов, в формуле была сделана ошибка из-за незнаний некоторых определений, появившихся позже. Она начиналась с шестого знака показателя. Наиболее близки к пониманию логарифма были братья Бернулли, а дебютное узаконивание произошло в восемнадцатом столетии Эйлером. Он же и распространил функцию в область образования.

История комплексного log

Дебютные попытки интегрировать lg в широкие массы делали на заре 18-го века Бернулли и Лейбниц. Но целостных теоретических выкладок они так и не сумели составить. По этому поводу велась целая дискуссия, но точного определения числу не присваивали. Позже диалог возобновился, но уже между Эйлером и Даламбером.

Последний был в принципе согласен со множеством фактов, предлагаемых основателем величины, но считал, что положительный и отрицательный показатели должны быть равны. В середине столетия формула была продемонстрирована в качестве окончательного варианта. Кроме того, Эйлером была опубликована производная десятичного логарифма и составлены первые графики.

Таблицы

Свойства числа указывают на то, что многозначные цифры можно не перемножать, а найти их log и сложить посредством специализированных таблиц.

Особенно ценным этот показатель стал для астрономов, которые вынуждены работать с большим набором последовательностей. В советское время десятичный логарифм искали в сборнике Брадиса, выпущенного в 1921 году. Позже, в 1971 году, появилось издание Веги.

Приведены основные свойства логарифма, график логарифма, область определения, множество значений, основные формулы, возрастание и убывание. Рассмотрено нахождение производной логарифма. А также интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Содержание

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

Область определения 0 < x < + ∞ 0 < x < + ∞
Область значений - ∞ < y < + ∞ - ∞ < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ - ∞
- ∞ + ∞

Частные значения


Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом :

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.
Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Докажем формулу замены основания.
;
.
Полагая c = b , имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a .

Если , то

Если , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e .
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям : .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
.
Выразим комплексное число z через модуль r и аргумент φ :
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

ОПРЕДЕЛЕНИЕ

Десятичным логарифмом называется логарифм по основанию 10:

Title="Rendered by QuickLaTeX.com">

Этот логарифм является решением показательного уравнения . Иногда (особенно в зарубежной литературе) десятичный логарифм обозначается еще как , хотя первые два обозначения присущи и натуральному логарифму.

Первые таблицы десятичных логарифмов были опубликованы английским математиком Генри Бригсом (1561-1630) в 1617 г. (поэтому иностранные ученые часто называют десятичные логарифмы еще бригсовыми), но эти таблицы содержали ошибки. На основе таблиц (1783 г.) словенского и австрийского математики Георга Барталомея Веги (Юрий Веха или Веховец, 1754-1802) в 1857 г. немецкий астроном и геодезист Карл Бремикер (1804-1877) опубликовал первое безошибочное издание. При участии русского математика и педагога Леонтия Филипповича Магницкого (Телятин или Теляшин, 1669-1739) в 1703 г. в России были изданы первые таблицы логарифмов. Десятичные логарифмы широко применялись для вычислений.

Свойства десятичных логарифмов

Этот логарифм обладает всеми свойствами, присущими логарифму по произвольному основанию:

1. Основное логарифмическое тождество:

5. .

7. Переход к новому основанию:

Функция десятичного логарифма — это функция . График этой кривой часто называют логарифмикой .

Свойства функции y=lg x

1) Область определения: .

2) Множество значений: .

3) Функция общего вида.

4) Функция непериодическая.

5) График функции пересекается с осью абсцисс в точке .

6) Промежутки знакопостоянства: title="Rendered by QuickLaTeX.com" height="16" width="44" style="vertical-align: -4px;"> для та для .