Кол во теплоты в чем измеряется. Электрический расчет бытовых электроприборов. Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

§ 1 Количество теплоты

Включим в холодном помещении электрообогреватель, и температура воздуха начинает повышаться. Или после зимней прогулки возвращаемся в теплый дом и ощущаем тепло. Названные примеры относят к теплообмену.

Теплообмен - это явление передачи внутренней энергии от одного тела к другому телу без совершения механической работы. В процессе теплообмена энергия или, как говорят, теплота поступает (нагревание комнаты электрообогревателем) или выделяется в окружающую среду (остывание горячей воды в чаше).

К примеру, чтобы согреть помещение или охладить устройство, защитить механизм от перегрева, необходимо выполнить расчеты, а значит, ввести параметр, с помощью которого удастся быстро и эффективно сосчитать количество поступающей или выделяющейся теплоты.

Количество теплоты- это энергия, передающаяся от одного тела к другому при теплообмене.

Вы видите калориметр - прибор для измерения количества теплоты. Простейший калориметр состоит из двух стаканов: внутреннего алюминиевого и внешнего пластмассового, которые разделены воздушным промежутком.

Как его применяют на практике? Во внутренний стакан нальём 200 г воды. Измерим её температуру: 20 °С. Погрузим в воду горячее тело - металлический цилиндрик.

Внутри калориметра начнётся теплообмен, и некоторое количество теплоты перейдёт от цилиндрика к воде, в результате чего её температура повысится и станет равной 60 °С. Можно вычислить изменение температуры, тем самым узнаем, на сколько градусов повысилась температура воды в калориметре:

Известно, что масса воды 200 г, инженер-теплотехник объяснит, что вода получила 200 г · 40 °С = 4000 калорий теплоты, но в физике количество теплоты измеряют джоулями. Формула выглядит следующим образом:

количество теплоты равно произведению удельной теплоемкости вещества на массу взятого вещества и на его изменение температуры, где

В этой формуле появилась физическая величина - удельная теплоемкость.

Удельная теплоёмкость вещества - физическая скалярная величина, показывающая, какое количество теплоты необходимо для изменения температуры 1(одного) кг этого вещества на 1 °С.

Эта величина является табличной.

Удельные теплоёмкости всех веществ измерены и занесены в специальные таблицы. Например, для воды в жидком состоянии с = 4200 Дж/(кг°С). Физический смысл показывает, что для нагревания 1 кг воды на 1 °С потребуется 4200 Дж теплоты. Иначе: каждый килограмм воды остывает на 1 °С, отдавая окружающим телам 4200 Дж тепловой энергии. Возвращаясь к нашему примеру, так как внутри калориметра находится вода, то воспользуемся данными таблицы и запишем ее значение: с = 4200 Дж/(кг°С)

Воспользуемся выше указанной формулой и сосчитаем количество теплоты, которое получила вода в джоулях:

§ 2 Единицы измерения количества теплоты

Для удобства и специфики работы используют внесистемные единицы количества теплоты - калории.

Калория - это количество тепла, необходимое для нагрева 1 г воды на 1 °С (от 19,5 до 20,5 °С).

Или используют:

1кДж = 1000Дж

1МДж = 1000000Дж

Данную формулу применяют не только в том случае, когда вещество нагревается, но и когда отдает тепло при охлаждении.

Калориметрические измерения показывают, что теплообмен всегда протекает так, что убывание внутренней энергии одних тел всегда сопровождается таким же поступлением внутренней энергии других тел, участвующих в теплообмене. Это одно из проявлений закона сохранения и превращения энергии.

Для расчета количества теплоты применяют формулу, связывающую удельную теплоемкость вещества, массу тела и изменение температуры, которую используют для расчета при нагревании и при охлаждении вещества. Единица измерения количества теплоты в системе СИ - джоуль. Также выяснили табличную величину для разных веществ - удельная теплоемкость

Список использованной литературы:

  1. Физика. 8 класс: Учебник для общеобразовательных учреждений/А.В. Перышкин. – М.: Дрофа, 2010.
  2. Физика 7-9 Учебник И.В. Кривченко.
  3. Физика Справочник. О.Ф. Кабардин. – М.: АСТ-ПРЕСС, 2010.

Использованные изображения:

СООТНОШЕНИЯ МЕЖДУ ЕДИНИЦАМИ ИЗМЕРЕНИЯ ЭНЕРГИИ

Таблицы пересчета физических величин.

Энергия, тепло, работа

Пересчет

кВт ч

кгс м

ккал

1 кВт ч

1 кгс м

1 ккал

Давление

Пересчет

Па
(Паскаль)

Бар
(Бар)

мм рт. ст.
(миллиметр ртутного столба)

мм вод. ст.
(миллиметр водяного столба)

кгс/см 2
(техническая атмосфера)

атм
(физическая атмосфера)

1 бар

1 мм рт. ст.

1 мм вод. ст.

1 кгс/см 2

1 атм

Давление - это физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности, к площади это поверхности. Единица давления - паскаль (Па), равный давлению, производимому силой в 1 ньютон на площадь в 1 квадратный метр. Все жидкости и газы передают производимое на них давление по всем направлениям (закон Паскаля).
Все тела, находящиеся на земной поверхности, испытывают со всех сторон одинаковое давление земной атмосферы - атмосферное давление. В каждой точке атмосферы это давление равно весу вышележащего столба воздуха; с высотой убывает. Среднее атмосферное давление на уровне моря эквивалентно давлению 760 мм рт. ст. (1013,25 гПа). Кроме атмосферного, различают абсолютное и избыточное давления. Абсолютным называют полное давление с учетом давления атмосферы, отсчитываемое от абсолютного нуля. Избыточным называют давление сверх атмосферного, равное разности между абсолютным и атмосферным давлением. Избыточное давление отсчитывается от условного нуля, за который принимается атмосферное давление. Абсолютное давление, меньшее, чем атмосферное, называют разрежением или вакуумом. Другими словами, вакуум равен разности между атмосферным и абсолютным давлениями.
Для измерения избыточного давления газа, пара и жидкости применяются манометры; небольших давлений и вакуума - напоромеры и тягомеры; вакуума - вакуумметры; давления и вакуума - тягонапоромеры и мановакуумметры.

Температура

Температура - это физическая величина, характеризующая степень нагретости тел. Она представляет собой меру средней кинетической энергии поступательного движения молекул. Чем больше средняя скорость движения молекул, тем выше температура тела.
Понятие температуры связано также со способностью тел с более высокой температурой передавать свою теплоту телам с более низкой температурой до тех пор, пока эти температуры не сравняются. Одновременно с изменением температуры тел могут меняться их физические свойства.
Приборы для измерения температуры подразделяют в зависимости от того, какой метод положен в основу их конструкции: контактный (когда измерительный прибор соприкасается с измеряемой средой), или неконтактный. К приборам, основанным на контактном методе измерений, относят жидкостные стеклянные термометры, манометрические термометры, термоэлектрические термометры (термопары) и термопреобразователи сопротивления. К приборам, основанным на неконтактном методе, относят пирометры излучения.

Соотношение единиц измерения

Длина

1 дюйм

1 миллиметр

0,03937 дюйма

1 фут

1 сантиметр

0,3937 дюйма

1 ярд

1 дециметр

0,3281 фута

1 род

1 метр

3,281 фута

1 чейн

1 метр

1,094 ярда

1 фурлонг

10,94 ярда

1 миля

1 километр

0,6214 мили

1 морская миля

1 километр

0,539 морской мили

Площадь

1 кв. дюйм

6,4516 кв. см

1 кв. сантиметр

0,1550 кв. дюйма

1 кв. фут

929,03 кв. см

1 кв. метр

1,550 кв. дюйма

1 кв. ярд

0,8361 кв. м

119,60 кв. ярда

1 акр

4046,9 кв. м

1 гектар

2,4711 акра

1 кв. миля

1 кв. километр

0,3861 кв. мили

Объем

1 куб. дюйм

16,387 куб. см

1 куб. сантиметр

0,061 куб. дюйма

1 куб. фут

0,0283 куб. м

1 куб. дециметр

0,035 куб. фута

1 куб. ярд

0,7646 куб. м

1 куб. метр

1,308 куб. ярда

Меры сыпучих тел и жидкостей

Таблицы перевода физических величин

Таблицы позволяют осуществлять перевод физических величин - метрических, СИ, используемых в США и Великобритании. Во всех таблицах используется умножение.

ДЛИНА

Табл. 1. Метрическая система, соотношение единиц измерения длины

Пересчет

ангстрем
(A)

нанометр
(nm, нм)

микрон
(mkm, мкм)

миллиметр
(mm, мм)

сантиметр
(cm, см)

дециметр
(dm, дм)

метр
(m, м)

километр
(km, км)

метр (m, м)

Табл. 2. Британская и Американская системы, соотношение единиц измерения длины

Пересчет

лига, лье

миля (ml)

род (rd)

ярд (yd)

фут (ft)

линк (link)

дюйм (in)

линия (line)

миля (mi)

Табл. 3. Перевод единиц измерения длины из Британско - Американской системы в Метрическую

Пересчет

ангстрем
(A)

нанометр
(nm, нм)

микрон
(mkm, мкм)

миллиметр
(mm, мм)

сантиметр
(cm, см)

дециметр
(dm, дм)

метр
(m, м)

километр
(km, км)

лига, лье

миля (mi)

род (rd)

ярд (yd)

фут (ft)

линк (link)

дюйм (in)

линия (line)

ПЛОЩАДЬ

Табл. 4. Перевод единиц измерения площади

Пересчет

дюйм 2

фут 2

ярд 2

миля 2

дюйм 2

фут 2

ярд 2

миля 2

МАССА

Табл. 5. Перевод единиц измерения массы

Пересчет

тонна

фунт

Англ. cwt

Англ.тонна

Амер. cwt

Амер. тонна

тонна

фунт

Англ. cwt

Англ.тонна

Амер. cwt

Амер. тонна

ОБЪЕМ

Табл. 6. Перевод единиц измерения объема

Пересчет

литр (дм 3)

дюйм 3

фут 3

ярд 3

UK пинта

UK галлон

US пинта

US галлон

литр (дм 3)

дюйм 3

фут 3

ярд 3 764555 0.764555 764.555 46656 27 1 1345.429 168.1784 1615.793 201.974
UK пинта 568.261 0.0005683 0.568261 34.6774 0.020068 0.000743 1 0.125 1.20095 0.150119
UK галлон 4546.09 0.0045461 4.54609 277.42 0.160544 0.005946 8 1 9.6076 1.20095
US пинта 473.176 0.0004732 0.473176 28.875 0.01671 0.000619 0.832674 0.104084 1 0.125
US галлон 3785.41 0.0037854 3.785411 231 0.133681 0.004951 6.661392 0.832674 8 1

ДАВЛЕНИЕ

Табл. 7. Пересчте единиц измерения давления

Пересчет

мм рт.ст.

мбар

паскаль

дюйм вод.ст.

дюйм рт.ст.

мм рт.ст.

мбар

паскаль

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

2. В чем измеряется теплота? Внутреннюю энергию тела и количество теплоты измеряют джоулями (Дж) или килоджоулями (кДж). Также калория - это количество теплоты, которое необходимо передать 1г воды для нагревания её на 1 оС.(1ккал-1000кал)

3. Чему равен 1 Джоуль в килокалориях? 1кал=4,1868 Дж;1ккал=4190 Дж

4. Каким образом передается тепло? Теплопроводностью, конвекцией, излучением

5. Что означает коэффициент теплопроводности, его размерность?

Λ- величина, измеряемая количеством теплоты, переданной в единицу времени через слой единичной толщины при разности температур поверхностного слоя в 1о,если площадь поверхности слоя равна 1. [ккал / (м ∙ час ∙град)] или[кал / (см∙ сек ∙град)]

6. Что такое удельная теплоемкость, ее размерность?

Удельная теплоёмкость- теплоёмкость единицы массы однородного вещества [кал / (г∙град)] [Дж / (кг ∙ о С) ]. Удельная теплоёмкость показывает, на сколько джоулей изменяется внутренняя энергия вещества массой 1кг при изменении температуры на1 о С.

6. В чем измеряется удельная теплота парообразования? Количество теплоты, необходимое для обращения в пар жидкости массой 1кг без изменения температуры, называют удельной теплотой парообразования.[Дж/кг]

7. Как выглядит аккумулирующий водонагреватель? Грубо говоря, накопительный электрический водонагреватель это большая бочка, в которой с помощью электрического нагревательного элемента (традиционного ТЭНа или его усовершенствованных разновидностей) нагревается вода. Для продления срока службы стальных водонагревателей на поверхность внутреннего бака наносятся специальные покрытия (стеклофарфор, эмаль и т.д.). Но перепады температуры и насыщенная кислородом вода ведут к разрушению покрытия бака и его коррозии. Для повышения сопротивляемости коррозии в конструкцию большинства электрических накопительных водонагревателей встраивается магниевый анод. Еще один путь борьбы с коррозией - изготовление внутреннего бака из нержавеющей стали. Практически все электрические накопительные водонагреватели оснащены термостатом, с помощью которого можно задать температуру нагрева воды, которая будет поддерживаться автоматически.

8. Какие виды НЭ используются в водонагревателях? Нагревательные элементы могут быть проволочными, ленточными, трубчатыми и электродными.

9. Какие виды нагрева вы знаете? Водонагреватели классифицируются по различным типам, самые распространенные из которых – два: по виду топлива (электрические, газовые, косвенные или комбинированные) и по способу нагрева воды (проточные и накопительные).

10. Как устроен проточный водонагреватель? В проточных водонагревателях резервуара нет, и вода, проходя сквозь бойлер, нагревается практически сразу. Большинство электрических проточных водонагревателей оснащено системой автоматического включения при начале водозабора. Проточные ВЭН могут быть косвенного и прямого нагрева, т.е.с нагревательным элементом или с электродами. НЭ - могут быть трубчатыми или спиральными. Проточные ВЭН с электродами применяются редко. Максимальная температура нагрева обычно не превышает 85оС. В случае изменения расхода горячей воды с целью поддержания постоянства tзад необходимо регулировать мощность НЭ. (См. рис.). Регулирование Рнэ осуществляется изменением напряжения на клеммах НЭ. Естественный коэффициент мощности (cos φ) проточного ВЭНа зависит от рода оборудования, используемого для регулирования Рнэ и имеет следующие значения:-трансформатор или автотрансформатор со ступенчатым регулированием напряжения cos φ=0,95÷0,98.-тиристорный регулятор напряжения с фазным управлением cos φ=0,7÷0,9.-при использовании контактора или тиристорного РН с ШИУ или питания НЭ непосредственно от сети cos φ=0,99÷1,0.

10. Каков КПД проточного водонагревателя? Более 85%

11. В каких случаях используют 3-х фазную сеть для подключения водонагревателя? Для 3-х фазных водонагревателей.

12. Как устроен жарочный шкаф? Его назначение? Жарочные шкафы, или духовки, используют для приготовления пищи. Они бывают стационарного и переносного исполнения. Жарочный шкаф служит для обжаривания мяса, рыбы, овощей, приготовления котлет и т.д. В состав шкафа входят несколько отдельных секций (2,3,4), в каждой из которых находится противень (либо стальной, либо чугунный).Нагревательные элементы, как правило трубчатые, расположены попарно в нижней части каждой секции. Самым простым агрегатом является электрическая переносная духовка. Она состоит из внутреннего и наружного корпусов, между которыми имеется теплоизоляция из листового асбеста. На верхней и нижней стенках внутреннего корпуса уложены нагревательные элементы, которые представляют собой спирали из нихромовой проволоки с надетыми на них фарфоровыми бусами. Мощность каждого элемента составляет 475 Вт, сопротивление - 25 Ом. Элементы соединены последовательно. В верхней стенке внутреннего корпуса сделаны отверстия для лучшего обогревания духовки. Наружный корпус состоит из кожуха, передней и задней стенок.

13. Как происходит управление мощностью НЭ в жарочном шкафу? Например, с помощью пакетных переключателей: для включения, выключения и переключения нагревательных элементов шкафа на различные степени мощности. Или в нижней части шкафа находится отсек оборудования, где размещены переключатели мощности (типа ПКУ-25), терморегуляторы ТК-32 (ТК-52) и сигнальные лампы типа ТЛ3-3-2.ПКУ-25 имеет 4 положения 0-II-III.I пол. – Рmin.II пол. – 0,5Рн.III пол. – Рном.Позиционное регулирование температуры в секции осуществляется с помощью ТК-32 (t=0÷330оС).Температура обжаривания (t2=180÷300оС) выбирается ручкой ТК-32.

14. Какова конструкция бытового тепловентилятора?

Бытовые тепловентиляторы служат для отопления жилых помещений.

В состав БТ входят: корпус тепловентилятора; спирали НЭ; вентилятор (осевой, центробежный); клавишные переключатели; термореле.

Обогрев помещения происходит преимущественно за счет принудительной конвенции.

Технические данные типовых бытовых электрических тепловентиляторов.

Uс, В -127, 220 В 50 Гц.

Рном. НЭ, кВт - 1,0; 1,25; 1,6; 2,0.

Qном, м3/мин - 1,0; 1,6; 2,5.

Количество n, об/мин - 2 или плавно.

Количество ступеней

Регулирования Рнэ - 2 или плавно.

На рисунке приведена типовая электрическая схема электрического тепловентилятора «Климат».

Q1÷ Q4 – клавишные переключатели. М – ЭД типа ДВ –114. R1-резистор ПЭВ- 680 Ом.

ТВ- термовыключатель. Н1, Н2- нагреватели по 1 кВт. ТВ срабатывает при повышении температуры внутри корпуса > 90оС.

Температура кожуха тепловентилятора не более 60оС.

16.Как управляется бытовой тепловентилятор? Теплопроизводительность тепловентилятора можно регулировать изменением скорости вращения вентилятора и изменением Рнэ.

Внутренняя энергия тела изменяется при совершении работы или теплопередаче. При явлении теплопередачи внутренняя энергия передается теплопроводностью, конвекцией или излучением.

Каждое тело при нагревании или охлаждении (при теплопередаче) получает или теряет какое-то количество энергии. Исходя из этого, принято это количество энергии назвать количеством теплоты.

Итак, количество теплоты - это та энергия, которую отдает или получает тело в процессе теплопередачи.

Какое количество теплоты необходимо для нагревания воды? На простом примере можно понять, что для нагревания разного количества воды потребуется разное количество теплоты. Допустим, возьмем две пробирки с 1 литром воды и с 2-мя литрами воды. В каком случае потребуется большее количество теплоты? Во втором, там, где в пробирке 2 литра воды. Вторая пробирка будет нагреваться дольше, если мы подогреваем их одинаковым источником огня.

Таким образом, количество теплоты зависит от массы тела. Чем больше масса, тем большее количество теплоты требуется для нагрева и, соответственно, на охлаждение тела требуется большее время.

От чего еще зависит количество теплоты? Естественно, от разности температур тел. Но это еще не все. Ведь если мы попытаемся нагреть воду или молоко, то нам потребуется разное количество времени. Т.е получается, что количество теплоты зависит от вещества, из которого состоит тело.

В итоге получается, что количество теплоты, которое нужно для нагревания или количество теплоты, которое выделяется при остывании тела, зависит от его массы, от изменения температуры и от вида вещества, из которого состоит тело.

В чем измеряется количество теплоты

За единицу количества теплоты принято считать 1 Джоуль . До появления единицы измерения энергии ученые считали количество теплоты калориями. Сокращенно эту единицу измерения принято писать - “Дж”

Калория - это количество теплоты, которое необходимо для того, чтобы нагреть 1 грамм воды на 1 градус Цельсия. Сокращенно единицу измерения калории принято писать - “кал”.

1 кал = 4,19 Дж.

Обратите внимание, что в этих единицах энергии принято отмечать пищевую ценность продуктов питания кДж и ккал.

1 ккал = 1000 кал.

1 кДж = 1000 Дж

1 ккал = 4190 Дж = 4,19 кДж

Что такое удельная теплоемкость

Каждое вещество в природе имеет свои свойства, и для нагрева каждого отдельного вещества требуется разное количество энергии, т.е. количества теплоты.

Удельная теплоемкость вещества - это величина, равная количеству теплоты, которое нужно передать телу с массой 1 килограмм, чтобы нагреть его на температуру 1 0 C

Удельная теплоемкость обозначается буквой c и имеет величину измерения Дж/кг*

Например, удельная теплоемкость воды равна 4200 Дж/кг* 0 C. То есть это то количество теплоты, которое нужно передать 1 кг воды, чтобы нагреть ее на 1 0 C

Следует помнить, что удельная теплоемкость веществ в разных агрегатных состояниях различна. То есть для нагревания льда на 1 0 C потребуется другое количество теплоты.

Как рассчитать количество теплоты для нагревания тела

Например, необходимо рассчитать количество теплоты, которое нужно потратить для того, чтобы нагреть 3 кг воды с температуры 15 0 С до температуры 85 0 С. Нам известна удельная теплоемкость воды, то есть количество энергии, которое нужно для того, чтобы нагреть 1 кг воды на 1 градус. То есть для того, чтобы узнать количество теплоты в нашем случае, нужно умножить удельную теплоемкость воды на 3 и на то количество градусов, на которое нужно увеличить температуры воды. Итак, это 4200*3*(85-15) = 882 000.

В скобках мы рассчитываем точное количество градусов, отнимая от конечного необходимого результата начальное

Итак, для того, чтобы нагреть 3 кг воды с 15 до 85 0 С, нам потребуется 882 000 Дж количества теплоты.

Количество теплоты обозначается буквой Q, формула для его расчета выглядит следующим образом:

Q=c*m*(t 2 -t 1).

Разбор и решение задач

Задача 1 . Какое количество теплоты потребуется для нагрева 0,5 кг воды с 20 до 50 0 С

Дано:

m = 0,5 кг.,

с = 4200 Дж/кг* 0 С,

t 1 = 20 0 С,

t 2 = 50 0 С.

Величину удельной теплоемкость мы определили из таблицы.

Решение:

2 -t 1 ).

Подставляем значения:

Q=4200*0,5*(50-20) = 63 000 Дж = 63 кДж.

Ответ: Q=63 кДж.

Задача 2. Какое количество теплоты потребуется для нагревания алюминиевого бруска массой 0,5 кг на 85 0 С?

Дано:

m = 0,5 кг.,

с = 920 Дж/кг* 0 С,

t 1 = 0 0 С,

t 2 = 85 0 С.

Решение:

количество теплоты определяется по формуле Q=c*m*(t 2 -t 1 ).

Подставляем значения:

Q=920*0,5*(85-0) = 39 100 Дж = 39,1 кДж.

Ответ: Q= 39,1 кДж.