Формула пика для нахождения площади многоугольника. Творческая работа " применение формулы пика". Результаты работы над проектом













































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Руководители:

  • Могутова Татьяна Михайловна
  • Дерюшкина Оксана Валерьевна

Девиз проекта:

“Если вы хотите научиться плавать, то смело входите в воду.
а если хотите научиться решать задачи, то решайте их”.
Д. Пойя.

Выбор темы проекта не случаен. Способы нахождения площади многоугольника нарисованного на “клеточках” очень интересная тема.

Мы знаем разные способы выполнения таких заданий: способ сложения, способ вычитания и др.

Нас очень заинтересовала эта тема, мы изучили много литературы и к нашей огромной радости нашли еще один способ, способ не известный по школьной программе, но способ замечательный! Вычисление площади, используя формулу, выведенную австрийским ученым – математиком Георгом Пиком.

Мы решили изучить формулу Пика, при помощи которой выполнять задания на нахождении площади очень легко!

Цель исследования

1. Изучение формулы Пика.

2. Расширение знаний о многообразии задач на клетчатой бумаге, о приёмах и методах решения этих задач.

Задачи:

1. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

2. Проанализировать и систематизировать полученную информацию

3. Создать электронную презентацию работы для представления собранного материала одноклассникам

4. Сделать выводы по результатам работы.

5. Подобрать наиболее интересные, наглядные примеры.

Методы исследования:

1. Моделирование

2. Построение

3. Анализ и классификация информации

4. Сравнение, обобщение

5. Изучение литературных и Интернет-ресурсов

Георг Пик – австрийский ученый – математик. Пик поступил в университет в Вене в 1875 году. Свою первую работу опубликовал в возрасте 17 лет. Круг его математических интересов был чрезвычайно широк. 67 его работ посвящены многим разделам математики, таким как: линейная алгебра, интегральное исчисление, геометрия, функциональный анализ, теория потенциала.

Широко известная Теорема появилась в сборнике работ Пика в 1899 году.

Теорема привлекла довольно большое внимание и начала вызывать восхищение своей простотой и элегантностью.

Формула Пика, формула вычисления площади многоугольника, изображенного на бумаге в клетку, полезна при решении заданий ЕГЭ и ОГЭ. Именно, поэтому, она нас очень заинтересовала.

Формула Пика - классический результат комбинаторной геометрии и геометрии чисел.

По теореме Пика площадь многоугольника равна:

Г: 2 + В – 1

Г – число узлов решетки на границе многоугольника

В – число узлов решетки внутри многоугольника.

Первым делом мы поставили задачу: изучить, что такое узлы решетки и как правильно вычислять их количество. Оказалось, это очень просто. Приведем несколько примеров.

Пусть дан произвольный треугольник. Узлы на границе изображены оранжевым цветом, узлы внутри изображены синим цветом. Найти узлы и подсчитать их количество очень легко.

В данном случае Г= 15, В = 35

Пример №2 Узлов на границе 18, т.е. Г = 18, узлов внутри 20, В = 20.

И еще один пример. Дан произвольный многоугольник. Считаем узлы на границе. Их 14. Узлом внутри многоугольника 43. Г = 14, В = 43.

С первой задачей мы справились!

Второй этап нашей работы: вычисление площадей многоугольников.

Рассмотрим несколько примеров.

Пример №1.

Г = 14, В = 43, S = + 43 – 1 = 49

Пример №2.

Г = 11, В = 5, S = + 5 – 1 = 9,5

Пример №3.

Г = 15, В = 22, S = + 22 – 1 = 28,5

Пример №4.

Г = 8, В = 16, S = + 16 – 1 = 19

Пример №5

Г = 10, В = 30, S = + 30 – 1 = 34

На рассмотрение пяти примеров мы затратили всего 1-2 минуты. Вычислять площадь по формуле Пика не только быстро, но и очень легко!

Но перед нами встал очень серьезный вопрос:

Можно ли доверять теореме Пика?

Получаются ли одинаковые результаты при вычислении площадей разными способами?

Найдем площади многоугольников по формуле Пика и обычным способом, применяя формулы геометрии и способы достроения или разбиения на части. Вот какие результаты мы получили:

Пример №1.

Вычислим площадь многоугольника по формуле Пика:

Подсчитаем количество узлов на границе и внутри. Г = 3, В = 6.

Вычислим площадь: S = 6 + - 1 = 6,5

Достроим многоугольник до прямоугольника. Площадь прямоугольника равна: 3 * 5 = 15, S? = = 3, S? = = 3 , S = = 2,5

S = 15-3-3-2,5 = 6,5

Результат одинаковый.

Пример №2.

Г = 4, В = 9, S = 9 + - 1 = 10

Достроим до прямоугольника.

Площадь прямоугольника равна: 5 * 4 = 20, S 1 = 2 * 1 = 2, S 2 = = 3,

S = = 2 , S = = 1,5, S = = 2,5

Площадь прямоугольника равна

S = 20 – 2 – 3 – 2 – 1,5 – 2,5 = 10

Мы снова получили одинаковые результаты.

Рассмотрим еще один пример.

Пример №3

Вычислим площадь по формуле Пика.

Г = 5, В = 6, S = 6 + - 1 = 7,5

Вычислим площадь, используя способ достроения.

Площадь прямоугольника равна 5·4 = 20

S 1 = 2 * 1 = 2, S 2 = = 1, S 3 = 2 * 1 = 2, S 4 = = 1, S 5 = = 1, S 6 = = 2,5

S = 20 – 2 -1– 2 – 1 – 1 – 2,5 – 3 = 7,5

Результат одинаковый.

В презентации мы рассмотрели три примера, но на самом деле мы рассмотрели очень много самых разных примеров. Результат всегда был один и тот же: Вычисление площади по формуле Пика и другими способами дает одинаковый результат.

Вывод: формуле Пика можно доверять! Она дает точный результат.

Мы довольны!

И еще один вопрос встал перед нами: какой способ вычисления наиболее рациональный, наиболее удобный для использования?

Чтобы ответить на этот вопрос, достаточно использовать всю предыдущую работу. Но рассмотрим еще три примера, которые окончательно позволят получить ответ на наш вопрос.

Пример №2

Пример №3

При помощи формулы Пика легко вычислить площадь многоугольника даже самой причудливой формы. Рассмотрим пример:

Вывод однозначный: наиболее рациональный способ вычисления площади многоугольника, изображенного на бумаге в клетку: формула Пика!

Предлагаем каждому из вас вычислить площадь многоугольника, используя формулу Пика:

Вычислите количество узлов на границе. Они изображены желтым цветом.

Вычислите количество узлов внутри, красный цвет.

Подставьте в формулу, назовите результат. Вы за одну минуту вычислили площадь.

Итак, формула Пика имеет ряд преимуществ перед другими способами вычисления площадей многоугольников на клетчатой бумаге:

Для вычисления площади многоугольника, нужно знать всего одну формулу:

S = Г:2 + В - 1.

Формула Пика очень проста для запоминания.

Формула Пика очень удобна и проста в применении.

Многоугольник, площадь которого необходимо вычислить, может быть любой, даже самой причудливой формы.

Применяя формулу Пика легко выполнять задание ЕГЭ и ОГЭ.

Приведем несколько примеров вычисления площади из вариантов ЕГЭ – 2015.

Мы решили научить пользоваться формулой Пика учащихся 9 – 11 классов нашей школы. Провели фестиваль “Формула Пика”.

Все учащиеся с большим интересом познакомились с презентацией, научились пользоваться формулой Пика.

За 30 минут практической работы учащиеся выполнили большое количество заданий. Каждый учащийся получил памятку “Формула Пика”.

Мы помогли им в подготовке к ЕГЭ и ОГЭ!

Спустя месяц работы, мы провели опрос учащихся 9–11 классом.

Задали следующие вопросы:

Вопрос №1:

Формула Пика – это рациональный способ вычисления площади многоугольника?

“Да” - 100% учащихся.

Вопрос №2:

Вы пользуетесь формулой Пика?

“Да” – 100% учащихся

Наша работа не прошла даром! Мы довольны!

Презентацию нашего проекта мы разместили в сети Интернет. Много просмотров и скачиваний нашей работы.

Мы оформили альбом “Формула Пика”. Им постоянно, особенно первое время, пользовались учащиеся нашей школы.

Результаты работы над проектом:

В процессе работы над проектом изучили справочную, научно-популярную литературу по теме исследования.

  • Изучили теорему Пика, научились находить площади фигур, изображенных на бумаге в клетку просто и рационально.
  • Расширили свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.
  • Провели для учащихся 9–11 фестиваль “Формула Пика”, научили их находить площадь, использую эту формулу. Подобрали много интересных примеров.
  • Создали электронную презентацию в помощь своим ровесникам.
  • Оформили альбом “Формула Пика”, который постоянно используют учащиеся школы.

Предлагает вам выполнить два задания, чтобы вы убедились в рациональности нашей работы.

Спасибо за внимания!

Старкова Кристина, ученица 8Б класса

В работе рассмотрена теорема Пика и ее доказательство.

Рассмотрены задачи на нахождение площади многоугольников

Скачать:

Предварительный просмотр:

УПРАВЛЕНИЕ ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

АДМИНИСТРАЦИИ ЧАЙКОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

ПЕРМСКОГО КРАЯ

VI МУНИЦИПАЛЬНАЯ КОНФЕРЕНЦИЯ ИССЛЕДОВАТЕЛЬСКИХ РАБОТ
УЧАЩИХСЯ

Муниципальное автономное общеобразовательное учреждение

«средняя общеобразовательная школа №11»

СЕКЦИЯ: МАТЕМАТИКА

Применение формулы Пика

Учащаяся 8 «Б» класса

МАОУ СОШ №11Чайковский

Руководитель:Батуева Л,Н.,

Учитель математики МАОУ СОШ№11

г. Чайковский

2012 год

I. Введение……………………………………………………. 2

II. Формула Пика

2.1.Решетки.Узлы………………………………………… .4

2.2.Триангуляция многоугольника………………………5

2.3. Доказательство теоремы Пика………………………6

2.4 Исследование площадей многоугольников…………9

2.5. Вывод…………………………………………………..12

III.Геометрические задачи с практическим содержанием…13

IV. Заключение………………………………………………..14

V. Список используемой литературы………………………..16

  1. Введение

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встал вопрос есть ли задачи, отличные от задач рассмотренных в учебники геометрии. Это задачи на клетчатой бумаге. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно – измерительных материалах ЕГЭ и ГИА, решила обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры.

Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

Мы определили:

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

  1. Цель исследования: Вывести и проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

Для достижения поставленной цели предусматриваем решение следующих задач:

  1. Подобрать необходимую литературу
  2. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  3. Проанализировать и систематизировать полученную информацию
  4. Найти различные методы и приёмы решения задач на клетчатой бумаге
  5. Создать электронную презентацию работы для представления собранного материала одноклассникам

многообразие задач на бумаге в клеточку, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении

  1. Гипотеза :. Площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по формуле планиметрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

II. Формула Пика

2.1.Решетки.Узлы.

Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты; множество всех точек пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки –узлами решетки.

Внутренние узлы многоугольника - красные.

Узлы на гранях многоугольника - синие.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

2.2.Триангуляция многоугольника

Любой многоугольник с вершинами в узлах сетки может быть триангулирован – разбит на «простые» треугольники.

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Рис. 1.37

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n – 2 (это разбиение – триангуляция с вершинами в вершинах n -угольника).

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный - любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница - связная ломаная без самопересечений, и он имеет ненулевую площадь).

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

2.3. Доказательство теоремы Пика.

Пусть В - число целочисленных точек внутри многоугольника, Г - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика : S=В+Г2-1

Пример. Для многоугольника на рисунке В=23 (желтые точки), Г=7, (синие точки, не забудем о вершинах!), поэтому квадратных единиц.

Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем В=0, Г=4 и .

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и . Имеем в этом случае,В=(а-1)(b-1) , Г=2a+2b, тогда по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и , рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая В=а-1)b-1 , 2 Г= Г=2a+2b 2 +с-1 и получаем, что 4)Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной. Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением . Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим B=MT=BM+BT+c-2 - число внутренних целочисленных точек нового многоугольника, Г=Г(М)+Г(T)-2(с-2)-2 - число граничных точек нового многоугольника. Из этих равенств получаем: BM+BT+c-2 , Г=Г(М)+Г(T)-2(с-2)-2 . Так как мы предположили, что теорема верна для и для по отдельности, то S(MT)+S(M)+S(T)=(В(М)+ ГМ2 -1)+В(T)+ ГT2 -1)=(В(М)+ В(T))+( ГМ2+ГT2)-2 =Г(MT)-(c-2)+ B(MT)+2(c-2)+22 -2= Г(MT)+ B(MT)2-1 .Тем самым, формула Пика доказана.

2.4 Исследование площадей многоугольников.

2) На клетчатой бумаге с клетками размером 1 см х 1 см изображен

треугольник.Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=12ah

Sтр.ABD=1/2 AD ∙ BD=1/2 ∙ 2 ∙ 1=1

Sтр.BDC=1/2 DC ∙ BD=1/2 ∙ 3 ∙ 1=1,5

Sтр.ABC=Sтр.BDC-Sтр.ABD=

1,5-1=0,5

S= В+Г2-1

Г=3 ;В=0.

S=0+3/2-1=0,5

3)На клетчатой бумаге с клетками размером 1 см х 1 см изображен четырех- угольник. Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=a∙b

Sкв.KMNE=7 ∙ 7=49

Sтр.AKB=1/2 ∙ KB ∙ AK=1/2 ∙ 4 ∙ 4=8

Sтр.AKB=Sтр.DCE=8

Sтр.AND= 1/2 ∙ ND ∙ AN=1/2 ∙ 3 ∙ 3=4,5

Sтр.AND=Sтр.BMC=4,5

Sпр.= Sкв.KMNE- Sтр.AKB- Sтр.DCE- Sтр.AND- Sтр.BMC=49-8-8-4,5-4,5=24

S= В+Г2-1

Г=14;В=19.

S=18+14/2-1=24

4)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 7 ∙1= 3,5

S2= 12a∙ b=1/2 ∙ 7 ∙ 2=7

S3= 12a∙ b=1/2 ∙ 4 ∙ 1=2

S4= 12a∙ b=1/2 ∙ 5 ∙ 1=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3.5-7-2-2,5-1=32см²

S= В+Г2-1

Г=5;В=31.

S=31+ 42 -1=32см²

5)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах.

S= a ∙b

a=36+36=62

b=9+9=32

S= 62∙32 =36 см 2

S= В+Г2-1

Г=18, В=28

S=28+ 182 -1=36см 2

6)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S=4,5+18+4,5=27 см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

7)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S4= 12a∙ b=1/2 ∙ 6 ∙ 6=18

Sкв.=9²=81см²

S=81-4,5-18-4,5-18=36см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

8)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 2 ∙ 4=4

S2= 12ah =1/2 ∙ 4 ∙ 4=8

S3= 12ah =1/2 ∙ 8 ∙ 2=8

S4= 12ah =1/2 ∙ 4 ∙ 1=2

Sпр.= a∙ b=6 ∙ 8=48

S5=48-4-8-8-2=24 см²

S= Г+В2-1

Г=16;В=17.

S=17+ 162 -1=24 см²

Вывод

  1. Сравнив результаты в таблицах и доказав теорему Пика,я пришла к выводу,что площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по выведенной формуле планиметрии

Итак, моя гипотеза оказалась верной

III.Геометрические задачи с практическим содержанием.

Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.

Задача 9 . Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м (рис. 10)

Решение.

Рис. 10 В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача 10 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м. (рис. 11)

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

Рис. 11 1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Заключение

В процессе исследования я изучила справочную, научно-популярную литературу, научилась работать в программе Notebook. Узнала, что

Задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные н задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

Литература

1.Геометрия на клетчатой бумаге. Малый МЕХмат МГУ.

2.Жарковская Н. М., Рисс Е. А . Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

3.Задачи открытого банка заданий по математике ФИПИ, 2010 – 2011

4.В.В.Вавилов, А.В.Устинов.Многоугольники на решетках.М.МЦНМО,2006.

5.Мтематические этюды. etudes.ru

6.Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др.Геометрия.7-9 классы.М. Просвещение,2010

Нарисуем на клетчатой бумаге какой-нибудь многоугольник. Например, такой, как показан на рисунке 1.

Попробуем теперь рассчитать его площадь. Как это сделать? Наверное, проще всего разбить его на прямоугольные треугольники и прямоугольники, площади которых уже нетрудно вычислить и сложить полученные результаты. Использованный мною способ несложен, но очень громоздок, кроме того он годится не для всяких многоугольников.

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный -- любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница -- связная ломаная без самопересечений, и он имеет ненулевую площадь). Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема Пика. Пусть -- число целочисленных точек внутри многоугольника, -- количество целочисленных точек на его границе, -- его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке 1 (желтые точки), (синие точки, не забудьте о вершинах!), поэтому квадратных единиц.

Доказательство теоремы Пика. Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем и

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и. Имеем в этом случае и, по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и, рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая и получаем, что

Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки 2 и 3). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной.

Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением. Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим

Число внутренних целочисленных точек нового многоугольника,

Число граничных точек нового многоугольника.

Из этих равенств получаем

Так как мы предположили, что теорема верна для и для по отдельности, то

Тем самым, формула Пика доказана.

Эту формулу открыл австрийский математик Пик Георг Александров (1859 - 1943 г.г.) в 1899 году. Кроме этой формулы Георг Пик открыл теоремы Пика, Пика - Жюлиа, Пика - Невалины, доказал неравенство Шварца - Пика. В Приложении 1 можно увидеть рассмотренные мною нестандартные задачи на применение формулы Пика.

Вычисление площади фигуры.

Метод Пика

Работа обучающейся 5Б класса МБОУ СОШ №23 г. Иркутска

Балсуковой Александры

Руководитель: Ходырева Т.Г.

2014г.

Вычисление площади фигуры. Метод Пика

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : сравнение, обобщение, аналогии, изучение литературы и Интернет-ресурсов, анализ информации.

Цель исследования:

    выбрать главную, интересную, понятную информацию

    Проанализировать и систематизировать полученную информацию

    Найти различные методы и приёмы решения задач на клетчатой бумаге

    проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

    Создать электронную презентацию работы для представления собранного материала

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

(Г. Галилей)

    Актуальность темы

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встает вопрос есть ли задачи, отличные от задач рассмотренных в учебнике. К таким задачам можно отнести задачи на клетчатой бумаге. В чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. На уроке математики учитель познакомила нас с интересным методом вычисления многоугольников. Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

И еще я узнала, что такие задачи рассматриваются в контрольно – измерительных материалах ГИА и ЕГЭ. Поэтому, считаю изучение этого материала полезным для применения его не только в дальнейшем учебном процессе, но и для решения нестандартных олимпиадных задач.

2.Понятие площади

Площадь - численная характеристика двумерной геометрической фигуры, показывающая размер этой фигуры. Исторически вычисление площади называлось . Фигура, имеющая площадь, называется квадрируемой .

Площадь плоской фигуры с точки зрения геометрии

1. Площадь -мера плоской фигуры по отношению к стандартной фигуре, являющейся квадратом со стороной, равной единице длины.

2. Площадь - численная характеристика, приписываемая плоским фигурам определенного класса (например, многоугольникам). Площадь квадрата со стороной, равной единице длины, принимаемая равной единице площади

3. Площадь - положительная величина, численное значение которой обладает следующими свойствами:

Равные фигуры имеют равные площади;

Если фигура разбивается на части, являющиеся простыми фигурами (т.е. те, которые можно разбить на конечное число плоских треугольников), то площадь этой фигуры равна сумме площадей ее частей;

Площадь квадрата со стороной, равной единице измерения, равна единице.

Таким образом, можно сделать вывод, что площадь не является конкретной величиной, а только дает некоторую условную характеристику какой-либо плоской фигуры. Чтобы найти площадь произвольной фигуры, то необходимо определить, сколько квадратов со стороной, равной единице длины, она в себя вмещает. Например, возьмем прямоугольник, в котором квадратный сантиметр укладывается ровно 6 раз. Это означает, что площадь прямоугольника равняется 6 см 2 .

Выбор площади квадрата со стороной, равной единице измерения, в качестве минимальной единицы измерения всех площадей не случаен. Это результат договоренности между людьми, возникший в ходе «естественного» многовекового отбора. Кроме того, были и другие предложения о единице измерения. Так, например, за такую единицу предлагалось взять площадь равностороннего треугольника (т.е. любую плоскую фигуру можно было представить в виде «суммы» некоего числа равносторонних треугольников), что привело бы к изменению численного представления площадей.

Таким образом, формулы для вычисления площадей появились в математике и осознались человеком не сразу-это многих ученых, проживающих в разные эпохи и разных странах. (Ошибочные формулы не находили место в науке и уходили в небытие). Истинные же формулы дополнялись, исправлялись и обосновывались на протяжений тысячелетий, пока не дошли до нас в их современном обличии.

Само же измерение площади состоит в сравнении площади данной фигуры с площадью фигуры, принятой за единицу измерения. В результате сравнения получается некоторое число- численное значение площади данной фигуры. Это число показывает, во сколько раз площадь данной фигуры больше (или меньше) площади фигуры, принятой за единицу измерения площади.

Таким образом, можно сделать вывод, что площадь-это искусственная величина, исторически введенная человеком для измерения некоторого свойства плоской фигуры. Необходимость ввода такой величины обуславливалась возрастающими потребностями в знании того, насколько большая та или иная территория, сколько надо зерна, чтобы засеять поле или вычислить площадь поверхности пола для украшения орнаментной плитки.

    Формула Пика

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью. Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки многоугольника хоть одну общую точку.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема . Пусть - число целочисленных точек внутри многоугольника, - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке L = 7 (красные точки), 9 (зеленые точки), поэтому S = 7+ 9/2 -1 = 10,5 квадратных единиц.

Теорема Пика - классический результат и .

Площадь треугольника с вершинами в узлах и не содержащего узлов ни внутри, ни на сторонах (кроме вершин), равна 1/2. Этот факт.

3. История

Формула Пика была открыта австрийским математиком Георгом Александром (1859-1942) в г.. В 16 лет Георг закончил школу и поступил в . В 20 лет получил право преподавать физику и математику. В 1884 году Пик уехал в к . Там он познакомился с другим учеником Клейна, . Позже, в 1885 году, он вернулся в , где и прошла оставшаяся часть его научной карьеры.

Георг Пик дружил с Эйнштейном. Пик и Эйнштейн не только имели общие научные интересы, но и страстно увлекались музыкой. Пик, игравший в квартете, который состоял из университетских профессоров, ввёл Эйнштейна в научное и музыкальное общества Праги.

Круг математических интересов Пика был чрезвычайно широк. В частности, им более 50 научных работ. Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника. В Германии эта теорема включена в школьные учебники.

4.Приложения формулы Пика

Формула Пика используется не только для вычисления площадей многоугольников, но и для решения многих задач олимпиадного уровня.

Некоторые примеры использования формулы Пика при решении задач:

1) Шахматный король обошел доску 8 × 8 клеток, побывав на каж-

дом поле ровно один раз и последним ходом вернувшись на исходное

поле. Ломаная, соединяющая последовательно центры полей, которые

проходил король, не имеет самопересечений. Какую площадь может

ограничивать эта ломаная? (Сторона клетки равна 1.)

Из формулы Пика сразу следует, что площадь, ограниченная ло-

маной, равна 64/2 − 1 = 31; здесь узлами решетки служат центры 64

полей и, по условию, все они лежат на границе многоугольника. Таким

образом, хотя таких «траекторий» короля достаточно много, но все они

ограничивают многоугольники равных площадей.

    Задачи из контрольно – измерительных материалов ГИА и ЕГЭ

Задание B3

Найдите площади фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

4.Заключение

В процессе исследования я изучила справочную, научно-популярную литературу. Узнала, что задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

5. Используемая литература:

1.В а с и л ь е в Н. Б. Вокруг формулы Пика // Квант. - 1974. - № 12

2.К о к с е П р а с о л о в В. В. Задачи по планиметрии. - М.: МЦНМО, 2006.т е р Г. С.М. Введение в геометрию. - М.: Наука, 1966

3.Рослова Л.О., Шарыгин И.Ф. Измерения. – М.:Изд. «Открытый мир», 2005.

Интернет – ресурсы :

:

Отзыв на работу

«Вычисление площадей плоских фигур. Метод Пика»

Рассмотрение данной темы позволит повысить познавательную активность обучающегося, который впоследствии на уроках геометрии начнет видеть гармонию чертежа и перестанет воспринимать геометрию (да и математику в целом) как скучную науку.

Отзыв составила учитель математики

Ходырева Татьяна Георгиевна