Y x в пространстве. Уравнения плоскости: общее, через три точки, нормальное. Параметрические уравнения прямой в пространстве

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

Уравнение
поверхности
F(x,y,z)=0
.

Плоскость. Уравнение плоскости по точке и нормальному вектору

Положение плоскости в пространстве
можно определить, задав какую-либо
точку М0 на плоскости и какой-либо
нормальный вектор. Нормальным
вектором плоскости называется любой
вектор, перпендикулярный к этой
плоскости.

Пусть точка М0(х0,у0,z0) лежит в плоскости.
Введем в рассмотрение произвольную точку
плоскости М(х,у,z).
z
n (A,B,C)
M
y
M0
x

Векторы n(A, B, C) и M 0 M (x x0 , y y0 , z z0)
ортогональны.
A(x-x0)+B(y-y0)+C(z-z0)=0
Уравнение плоскости по точке и
нормальному вектору.

Пример 1:

проходящей через точку М(2,3,-1)
перпендикулярно вектору n(1,2, 3)
Решение:
По формуле: 1(х-2)+2(у-3)-3(z+1)=0
или х+2у-3z-11=0

Пример 2:
Написать уравнение плоскости,
проходящей через точку М(1,0,0)
перпендикулярно вектору n(2,0,1) .
Решение:
Получаем: 2(х-1)+0(у-0)+1(z-0)=0
или 2х+z-2=0.

Общее уравнение плоскости

A(x-x0)+B(y-y0)+C(z-z0)=0, раскроем в нем
скобки и обозначим –Aх0-Ву0-Сz0=D.
Приведем уравнение рассматриваемой
плоскости к виду:
Ax+By+Cz+D=0 - общее уравнение плоскости.
Коэффициенты А,В,С являются
координатами нормального вектора
плоскости.

Частные случаи общего уравнения плоскости

1. Пусть А=0, В,С,D≠0. Тогда: By+Cz+D=0.
Нормальный вектор плоскости n(0, B, C)
перпендикулярен оси ОХ и, следовательно,
плоскость параллельна оси ОХ.
z
y
x

Уравнения Ax+Cz+D=0 и Ax+By+D=0
выражают плоскости, параллельные осям ОУ
и OZ.
2. D=0, А,В,С≠0. Уравнение плоскости:
Ax+By+Cz=0. Точка О(0,0,0) удовлетворяет
уравнению плоскости. Уравнение задает
плоскость, проходящую через начало
координат.
3. А=0, D=0, В,С≠0. Уравнение плоскости:
By+Cz=0. Плоскость одновременно
параллельна оси ОХ и проходит через начало
координат, т.е. проходит через ось ОХ.

Аналогично уравнения Ax+Cz=0 и Ax+By=0
выражают плоскости, проходящие через оси
OY и OZ.
4. А=0, В=0, С,D≠0. Уравнение плоскости:
Cz+D=0. Плоскость одновременно
параллельна осям ОХ и ОУ, т.е. координатной
плоскости ОХУ. Аналогично уравнения
By+D=0, и Ax+D=0 выражают плоскости,
параллельные координатным плоскостям OXZ
и OYZ.

Пример:
Z=3
z
3
y
x

А=0, В=0, D=0, С≠0.
Уравнение плоскости: Cz=0 или z=0. Это
плоскость одновременно параллельная
координатной плоскости ОХУ, т.е. сама
координатная плоскость ОХУ. Аналогично:
у=0 и х=0 – уравнения координатных
плоскостей OXZ и OYZ.

Уравнение плоскости, проходящей через три заданные точки

Три точки, не лежащие на одной прямойM1(x1,y1,z1), M2(x2,y2,z2), M3(x3,y3,z3).
M(x,y,z) – произвольная точка плоскости.
z
M2
М1
М3
М

Векторы M1M , M 1M 2 , M 1 M 3 ,
компланарны. Их смешанное
произведение равно нулю.
x x1
x2 x1
y y1
y2 y1
z z1
z 2 z1 0
x3 x1
y3 y1
z3 z1
Это искомое уравнение плоскости,
проходящей через три заданные точки.

Пример. Написать уравнение плоскости,
проходящей через точки M1(1,2,1),
M2(0,1,4), M3(-3,3,2).
Решение: Используя полученное
уравнение, имеем:
x 1 y 2 z 1
1
4
2
1
3 0
1
Или 4х+11у+5z-31=0

Угол между плоскостями, условие параллельности и перпендикулярности двух плоскостей

Две плоскости: A1x+B1y+C1z+D1=0 и
A2x+B2y+C2z+D2=0. Их нормальные
векторы n1 (A1 , B1 , C1) , n2 (A2 , B2 , C2)
Углом между двумя плоскостями
называется угол между их нормальными
векторами
n1 n2
Cosω=
n1 n2
A1 A2 B1 B2 C1C2
A12 B12 C12 A22 B22 C22

Если плоскости перпендикулярны, то их
нормальные векторы тоже
перпендикулярны, и поэтому их
скалярное произведение равно нулю:
А1·А2+В1·В2+С1·С2=0.
Если плоскости параллельны, то
параллельны их нормальные векторы, а
значит, выполняются соотношения:
A1 B1 C1
A2 B2 C2

Пример: Написать уравнение плоскости,
проходящей через точку M(0,1,4)
параллельно плоскости 2х-4у-z+1=0.
Решение: Вектор нормали данной
плоскости будет являться нормальным
вектором и для искомой плоскости.
Используем уравнение плоскости по точке
и нормальному вектору:
2(х-0)-4(у-1)-(z-4)=0 или 2х-4у-z+8=0.

.Расстояние от точки до плоскости

найти расстояние от точки М(х0,у0,z0) до
плоскости: Ax+By+Cz+D=0. Опустим из точки
М перпендикуляр МК на плоскость (d).
z
M
n
K
x
y

Пусть точка К имеет координаты х1,у1,z1
n KM n KM d n
Или n KM А(х0-х1)+В(у0-у1)+С(z0-z1)=
= Ax0+By0+Cz0-(Ax1+By1+Cz1).
Точка К лежит в плоскости, ее
координаты удовлетворяют уравнению
плоскости, то есть Ax1+By1+Cz1+D=0.

Учитывая это, получаем: n KM
Ax0+By0+Cz0+D-(Ax1+By1+Cz1+D)=
Ax0+By0+Cz0+D.
Тогда: Ax0+By0+Cz0+D= d n ;
d
Ax0 By 0 Cz0 D
A B C
2
2
2

Пример:
Найти расстояние от точки М (-1,2,3) до
плоскости 2х-6у-3z+2=0.
Решение:
Воспользуемся формулой и подставим в
уравнение плоскости координаты
заданной точки:
d
2 (1) (6) 2 3 (3) 2
2 2 (6) 2 32
21
=
=3
7

Общие уравнения прямой в пространстве

Прямая в пространстве рассматривается
как линия пересечения двух плоскостей.
A1 x B1 y C1 z D1 0
A2 x B2 y C2 z D2 0
Система задает прямую в том случае, если
плоскости не являются параллельными,
A1 B1 C1
A2 B2 C 2

Канонические уравнения прямой в пространстве

Положение прямой L в пространстве
однозначно определено, если известна
какая-нибудь точка М0(х0,у0,z0), лежащая на
прямой L, и задан направляющий вектор
S (m, n, p)
S
M
M0

М(х,у,z) – произвольная точка на этой
прямой. Тогда векторы
M 0 M =(х-х0, у-у0, z-z0) и S (m, n, p)
будут коллинеарны:
x x0 y y 0 z z 0
m
n
p
- канонические уравнения прямой в
пространстве или уравнения прямой по
точке и направляющему вектору.

Пример 1:

через точку М(1,2,3), параллельно прямой
x 1 y 7 z
2
5
3
Решение:
Так как прямые параллельны, то S (2,5,3)
является направляющим вектором и искомой
прямой. Следовательно:
x 1 y 2 z 3
2
5
3

Пример 2:
Написать уравнение прямой L, проходящей
через точку М(1,2,3), и имеющей
направляющий вектор S (2,0,5)
Решение:
Воспользуемся формулой:
x 1 z 3
и
2
5
у-2=0,
то есть 5х-2z+1=0 и у=2. Это означает, что
прямая лежит в плоскости у=2

Уравнения прямой в пространстве по двум точкам

Заданы две точки М1(х1,у1,z1) и М2(х2,у2,z2).
Написать уравнение прямой, проходящей
через две точки.
М1
М2

Прямая проходит через точку М1 и имеет в
качестве направляющего вектора M 1M 2
Уравнение имеет вид:
x x1
y y1
z z1
x2 x1 y 2 y1 z 2 z1
Пример: Написать уравнение прямой,
проходящей через точки М1(1,4,-3) и
М2(2,1,1).
Решение: Воспользуемся формулой
x 2 y 1 z 1
1
3
4

Параметрические уравнения прямой в пространстве

Рассмотрим канонические уравнения
прямой: x x0 y y0 z z 0
m
n
p
Введем параметр t:
x x0 y y 0 z z 0
t
m
n
p
-∞ < t <+∞.

Получим:
x x0
t
y m y
0
t
n
z z0 t
p
или
x x0 mt
y y0 nt
z z pt
0
параметрические уравнения прямой в
пространстве. В таком виде их часто
используют в механике и физике, параметр t,
обычно, время.

Приведение общих уравнений прямой в пространстве к каноническому виду

Заданы общие уравнения прямой в
пространстве
A1 x B1 y C1 z D1 0 (1)
A2 x B2 y C2 z D2 0
Привести их к каноническому виду
x x0 y y 0 z z 0
m
n
p

Для решения задачи нужно:
1. найти координаты (х0,у0,z0) какой-либо
точки, лежащей на прямой,
2. найти координаты (m,n,p) направляющего
вектора этой прямой.
Чтобы найти координаты точки М0 придадим
одной из координат произвольное численное
значение, например полагаем х=х0. Внеся его
в систему (1), получаем систему двух
уравнений с неизвестными у и z. Решаем ее.
В результате на прямой найдена точка
М0(х0,у0,z0).

В качестве направляющего вектора примем
вектор, который является результатом
векторного произведения нормальных
векторов двух плоскостей.
S (m, n, p) n1 n2
i
A1
j
B1
A2
B2
k
B1
C1
B2
C2
C1
C2
i
A1
C1
A2
C2
j
A1
B1
A2
B2
k

Получаем координаты направляющего
вектора:
A1 B1
A1 C1
B1 C1
p
n
m
A2 B2
A2 C2
B2 C2
Общие уравнения прямой, записанные в
каноническом виде:
x x0
y y0
z z0
B1 C1
C1 A1
A1 B1
B2
C2
C2
A2
A2
B2

Пример: Записать каноническое уравнение
прямой
x 2 y z 5 0
x y z 1 0
Решение: Положим z0=0. Тогда:
x 2 y 5
x y 1
Отсюда: : у0=-6, х0=7. Точка М0, лежащая на
прямой, имеет координаты: (7,-6,0).

Найдем направляющий вектор. Нормальные
векторы плоскостей имеют координаты
n1 (1,2, 1)
Тогда
n2 (1,1,1)
i j k
S n1 n2 1 2 1 3i 2 j k
1 1
1
Канонические уравнения прямой имеют вид:
x 7 y 6 z
3
2
1

Угол между двумя прямыми в пространстве, условие перпендикулярности и параллельности прямых

прямые L1 и L2 заданы в каноническом виде с
направляющими векторами
S 1 (m1 , n1 , p1) и S 2 (m2 , n2 , p2)
x x1 y y1 z z1
m1
n1
p1
x x2 y y 2 z z 2
m2
n2
p2

Углом между двумя прямыми называется угол
между их направляющими векторами.
S1 S 2
cos (L1 , L2) cos(S1 , S 2)
S1 S 2
cos(L1 , L2)
m1m2 n1n2 p1 p2
m12 n12 p12 m22 n22 p22

Прямые перпендикулярны, если
перпендикулярны их направляющие векторы:
То есть S1 S2 0 , или
m1m2+n1n2+p1p2=0.
Прямые параллельны, если параллельны их
направляющие векторы:
m1 n1
p1
m2 n 2 p 2

Пример: Найти угол между прямыми
x 2 y 7
z
1
3
2
и
x 10 y 3 z 5
4
1
2
Решение: Направляющие векторы прямых
имеют координаты: (1,3,-2) и (4,1,2).
Следовательно,
1 4 3 1 (2) 2
3
cos(L1 , L2)
1 9 4 16 1 4 7 16
3
(L1 , L2) arccos
7 16

Угол между прямой и плоскостью

Задана плоскость Р: Ах+Ву+Сz+D=0, и
прямая L:
x x0 y y 0 z z 0
m
n
p
n
S
ω
φ

Углом между прямой и плоскостью
называется угол φ между прямой и проекцией
ее на плоскость.
ω - угол между нормальным вектором
плоскости и направляющим вектором
прямой. ω=π/2-φ. Тогда sinφ=cos(π/2-φ)=
=cosω. Но cosω=cos (n, S)
Тогда
n S
sinφ= cos (n, S)
n S

sinφ =
Am Bn Cp
m 2 n 2 p 2 A2 B 2 C 2
Пример: Найти угол между прямой:
x 2 y 1 z
3
2
6
и плоскостью: 2х+у+2z-5=0.
Решение: Нормальный вектор плоскости
имеет координаты: (2,1,2), направляющий
вектор прямой имеет координаты: (3,2,-6).
sin
6 2 12
4
2
2
2
2
2
2
21
2 1 2 3 2 6

Условие перпендикулярности и параллельности прямой и плоскости.

x x0 y y 0 z z 0
m
n
p
P
Задана прямая L:
и плоскость Р: Ах+Ву+Сz+D=0.
Если прямая параллельна плоскости, то
направляющий вектор прямой
перпендикулярен нормальному вектору
плоскости.
S
n
L

Следовательно, их скалярное произведение
равно нулю: A·m+B·n+C·p=0.
Если прямая перпендикулярна плоскости, то
эти векторы параллельны.
S
n
Р
L
В этом случае:
A B C
m n p

Пример:
Написать уравнение прямой,
проходящей через точку М(1,2,-3),
перпендикулярно плоскости
4х+2у-z+5=0.
Решение:
Так как плоскость перпендикулярна
прямой, то нормальный вектор и
направляющий вектор параллельны:
x 1 y 2 z 3
4
2
1

Разберем типовую задачу.
Даны вершины пирамиды ABCD: А(1,0,0);
B(0,2,0); C(0,0,3), D(2,3,4). Найти:
1. Длину и уравнение ребра АВ,
2. Уравнение и площадь грани АВС,
3. Уравнение и длину высоты, опущенной
из вершины D на грань АВС,
4. Угол между ребром AD и гранью АВС,
5. Объем пирамиды.

Чертеж:
z
D
C
B
A
x
y

1. Введем в рассмотрение вектор AB . Его
координаты: (0-1;2-0;0-0), или (-1;2;0). Длина
ребра АВ равна модулю вектора.
АВ= 1 4 0 5
Уравнение прямой АВ (уравнение прямой по
двум точкам):
x 1 y
1 2
Или 2х+у-2=0

2. Уравнение грани АВС (уравнение
плоскости по трем точкам):
x 1 y z
1 2 0 0
1
0 3
Отсюда: (х-1)∙6-у∙(-3)+z∙2=0,
или 6х+3у+2z-6=0.
Площадь треугольника АВС найдем с
помощью векторного произведения
векторов AB и AC

Координаты вектора AB =(-1;2;0),
вектора AC =(-1,0,3).
1
SΔABC= AB AC
кв.единиц.
2
Векторное произведение:
i
j k
AB AC 1 2 0 6i 3 j 2k
1 0 3

Тогда
1
S ABC 6i 3 j 2k
2
1
7
36 9 4 3,5 êâ.åä.
2
2

Уравнение высоты - уравнение прямой по
точке D(2,3,4) и направляющему вектору. В
качестве направляющего вектора –
нормальный вектор грани АВС: n (6,3,2)
x 2 y 3 z 4
6
3
2
Для нахождения длины высоты используем
формулу:
Ax0 By 0 Cz0 D
d
A2 B 2 C 2

Получим:
d
6 2 3 3 2 4 6
36 9 4
27
3
4. Угол между ребром AD и гранью АВС.
Уравнение грани АВС: 6х+3у+2z-6=0,
нормальный вектор имеет координаты:
(6,3,2). Напишем уравнения прямой,
проходящей через точки А(1,0,0) и D(2,3,4):
x 1 y 0 z 0
2 1 3 0 4 0

Эта прямая имеет направляющий вектор с
координатами:(1,3,4). Тогда
sin
=
Am Bn Cp
m n p A B C
2
2
2
2
6 1 3 3 2 4
12 32 4 2 6 2 32 2 2
arcsin
2
23
7 26
2
=
23
23
26 7 7 26

5. Объем пирамиды равен 1/6 объема
параллелепипеда, построенного на
векторах, как на сторонах. Используем
смешанное произведение векторов.
Координаты векторов: AB =(-1,2,0),
AC○ =(-1,0,3), AD =(1,3,4)
○ Vпараллелепипеда
1 2 0
1 0 3 23
1
3 4
○ Vпирамиды=23/6 куб.ед.

ЛЕКЦИЯ 6-7. Элементы аналитической геометрии.

Поверхности и их уравнения.

Пример 1.

Сфера .

Пример 2.

F(x,y,z)=0 (*),

Это - уравнение поверхности

Примеры :

x 2 + y 2 – z 2 = 0 (конус)

Плоскость.

Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору.

Рассмотрим плоскость в пространстве. Пусть М 0 (x 0 , y 0 , z 0) – данная точка плоскости Р, а - вектор, перпендикулярный плоскости (нормальный вектор плоскости).

(1) – векторное уравнение плоскости.

В координатной форме:

A(x - x 0) + B(y - y 0) + C(z - z 0) = 0 (2)

Получили уравнение плоскости, проходящей через заданную точку .

Общее уравнение плоскости.

Раскроем скобки в (2): Ax + By + Cz + (-Ax 0 – By 0 – Cz 0) = 0 или

Ax + By + Cz + D = 0 (3)

Полученное уравнение плоскости линейно , т.е. уравнение 1 степени относительно координат x, y, z. Поэтому плоскость – поверхность первого порядка .

Утверждение : Всякое уравнение, линейное относительно x, y, z задает плоскость.

Любая плоскость м.б. задана уравнением (3), которое называется общим уравнением плоскости.

Частные случаи общего уравнения.

а) D=0: Ax + By + Cz = 0. Т.к. координаты точки О(0, 0, 0) удовлетворяют этому уравнению, то заданная им плоскость проходит через начало координат.

б) С=0: Ax + By + D = 0. В этом случае нормальный вектор плоскости , поэтому плоскость, заданная уравнением параллельна оси OZ.

в) С=D=0: Ax + By = 0. Плоскость параллельна оси OZ (т.к. С=0) и проходит через начало координат (т.к. D=0). Значит, она проходит через ось OZ.

г) В=С=0: Ax + D = 0 или . Вектор , т.е. и . Следовательно, плоскость параллельна осям OY и OZ, т.е. параллельна плоскости YOZ и проходит через точку .

Самостоятельно рассмотреть случаи: B=0, B=D=0, A=0, A=D=0, A=C=0, A=B=0/

Уравнение плоскости, проходящей через три заданные точки.

Т.к. все четыре точки принадлежат плоскости, то данные векторы компланарны, т.е. их смешанное произведение равно нулю:

Получили уравнение плоскости, проходящей через три точки в векторной форме.

В координатной форме:

(7)

Если раскрыть определитель, то получим уравнение плоскости в виде:

Ax + By + Cz + D = 0.

Пример . Написать уравнение плоскости, проходящей через точки М 1 (1,-1,0);

М 2 (-2,3,1) и М 3 (0,0,1).

, (x - 1)·3 - (y + 1)(-2) + z·1 = 0;

3x + 2y + z – 1 = 0.

Уравнение плоскости в отрезках

Пусть дано общее уравнение плоскости Ax + By + Cz + D = 0 и D ≠ 0, т.е. плоскость не проходит через начало координат. Разделим обе части на –D: и обозначим: ; ; . Тогда

получили уравнение плоскости в отрезках .

где a, b, c – величины отрезков, отсекаемых плоскостью на осях координат.

Пример 1. Написать уравнение плоскости, проходящей через точки А(3, 0, 0);

B(0, 2, 0) и С(0, 0, -3).

a=3; b=2; c=-3 , или 2x + 3y - 2z – 6 = 0.

Пример 2. Найти величины отрезков, которые отсекает плоскость

4x – y – 3z – 12 = 0 на осях координат.

4x – y – 3z = 12 a=3, b=-12, c=-4.

Нормальное уравнение плоскости.

Пусть дана некоторая плоскость Q. Из начала координат проведем перпендикуляр ОР к плоскости. Пусть заданы |ОР|=р и вектор : . Возьмем текущую точку M(x, y, z) плоскости и вычислим скалярное произведение векторов и : .

Если спроектировать точку М на направление , то попадем в точку Р. Т.о., получим уравнение

(9).

Задание линии в пространстве.

Линию L в пространстве можно задать как пересечение двух поверхностей. Пусть точка M(x, y, z), лежащая на линии L, принадлежит как поверхности Р1, так и поверхности Р2. Тогда координаты этой точки должны удовлетворять уравнениям обеих поверхностей. Поэтому под уравнением линии L в пространстве понимают совокупность двух уравнений, каждое из которых является уравнением соответствующей поверхности:

Линии L принадлежат те и только те точки, координаты которых удовлетворяют обоим уравнениям в (*). Позже мы рассмотрим и другие способы задания линий в пространстве.

Пучок плоскостей.

Пучок плоскостей – множество всех плоскостей, проходящих через заданную прямую – ось пучка.

Чтобы задать пучок плоскостей, достаточно задать его ось. Пусть уравнение этой прямой задано в общем виде:

.

Составить уравнение пучка – значит составить уравнение, из которого можно получить при дополнительном условии уравнение любой плоскости пучка, кроме, б.м. одной. Умножим II уравнение на л и сложим с I уравнением:

A 1 x + B 1 y + C 1 z + D 1 + л(A 2 x + B 2 y + C 2 z + D 2) = 0 (1) или

(A 1 + лA 2)x + (B 1 + лB 2)y + (C 1 + лC 2)z + (D 1 + лD 2) = 0 (2).

л – параметр – число, которое может принимать действительные значения. При любом выбранном значении л уравнения (1) и (2) линейные, т.е. это – уравнения некоторой плоскости.

1. Покажем , что эта плоскость проходит через ось пучка L. Возьмем произвольную точку M 0 (x 0 , y 0 , z 0) L. Следовательно, М 0 Р 1 и М 0 Р 2 . Значит:

Следовательно, плоскость, описываемая уравнением (1) или (2) принадлежит пучку.

2. Можно доказать и обратное : всякая плоскость, проходящая через прямую L, описывается уравнением (1) при соответствующем выборе параметра л.

Пример 1 . Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + y + 5z – 1 = 0 и 2x + 3y – z + 2 = 0 и через точку М(3, 2, 1).

Записываем уравнение пучка: x + y + 5z – 1 + л(2x + 3y – z + 2) = 0. Для нахождения л учтем, что М Р:

Всякую поверхность в пространстве можно рассматривать как геометрическое место точек, обладающим некоторым свойством, общим для всех точек.

Пример 1.

Сфера – множество точек, равноудаленных от данной точки С (центра). С(x 0 ,y 0 ,z 0). По определению |СМ|=R или или . Данное уравнение выполняется для всех точек сферы и только для них. Если x 0 =0, y 0 =0, z 0 =0, то .

Аналогичным образом можно составить уравнение любой поверхности, если выбрана система координат.

Пример 2. x=0 – уравнение плоскости YOZ.

Выразив геометрическое определение поверхности через координаты ее текущей точки и собрав все слагаемые в одной части, получим равенство вида

F(x,y,z)=0 (*),

Это - уравнение поверхности , если координаты всех точек поверхности удовлетворяют данному равенству, а координаты точек, не лежащих на поверхности, не удовлетворяют.

Т.о., каждой поверхности в выбранной системе координат соответствует свое уравнение. Однако, не каждому уравнению вида (*) соответствует поверхность в смысле определения.

Примеры :

2x – y + z – 3 = 0 (плоскость)

x 2 + y 2 – z 2 = 0 (конус)

x 2 + y 2 +3 = 0 – координаты ни одной точки не удовлетворяют.

x 2 + y 2 + z 2 =0 – единственная точка (0,0,0).

x 2 = 3y 2 = 0 – прямая (ось OZ).


Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.