В какие реакции вступает бензол. Физические и химические свойства бензола. Замещение в боковой цепи гомологов бензола

Первая группа реакций — реакции замещения. Мы говорили, что арены не имеют кратных связей в структуре молекулы, а содержат сопряженную систему из шести электронов, которая очень стабильна и придает дополнительную прочность бензольному кольцу. Поэтому в химических реакциях происходит в первую очередь замещение атомов водорода, а не разрушение бензольного кольца.

С реакциями замещения мы уже сталкивались при разговоре об алканах , но для них эти реакции шли по радикальному механизму, а для аренов характерен ионный механизм реакций замещения.

Первое химическое свойство — галогенирование. Замещение атома водорода на атом галогена — хлора или брома.

Реакция идет при нагревании и обязательно с участием катализатора. В случае с хлором это может быть хлорид алюминия или хлорид железа три. Катализатор поляризует молекулу галогена, в результате чего происходит гетеролитический разрыв связи и получаются ионы.

Положительно заряженный ион хлора и вступает в реакцию с бензолом.

Если реакция происходит с бромом, то катализатором выступает бромид железа три или бромид алюминия.

Важно отметить, что реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует.

У галогенирования гомологов бензола есть свои особенности. В молекуле толуола метильная группа облегчает замещение в кольце, реакционная способность повышается, и реакция идет в более мягких условиях, то есть уже при комнатной температуре.

Важно отметить, что замещение всегда происходит в орто- и пара-положениях, поэтому получается смесь изомеров.

Второе свойство — нитрование бензола, введение нитрогруппы в бензольное кольцо.

Образуется тяжелая желтоватая жидкость с запахом горького миндаля — нитробензол, поэтому реакция может быть качественной на бензол. Для нитрования используется нитрующая смесь концентрированной азотной и серной кислот. Реакция проводится при нагревании.

Напомню, что для нитрования алканов в реакции Коновалова использовалась разбавленная азотная кислота без добавления серной.

При нитровании толуола, также как и при галогенировании, образуется смесь орто- и пара- изомеров.

Третье свойство — алкилирование бензола галогеналканами.

Эта реакция позволяет ввести углеводородный радикал в бензольное кольцо и может считаться способом получения гомологов бензола. В качестве катализатора используется хлорид алюминия, способствующий распаду молекулы галогеналкана на ионы. Также необходимо нагревание.

Четвертое свойство — алкилирование бензола алкенами.

Таким способом можно получить, например, кумол или же этилбензол. Катализатор — хлорид алюминия.

2. Реакции присоединения к бензолу

Вторая группа реакций — реакции присоединения. Мы говорили, что эти реакции не характерны, но они возможны при достаточно жестких условиях с разрушением пи-электронного облака и образованием шести сигма-связей.

Пятое свойство в общем списке — гидрирование, присоединение водорода.

Температура, давление, катализатор никель или платина. Таким же образом способен реагировать толуол.

Шестое свойство — хлорирование. Обратите внимание, что речь идет именно о взаимодействии с хлором, поскольку бром в эту реакцию не вступает.

Реакция протекает при жестком ультрафиолетовом облучении. Образуется гексахлорциклогексан, другое название гексахлоран, твердое вещество.

Важно помнить, что для бензола не возможны реакции присоединения галогеноводородов (гидрогалогенирование) и присоединение воды (гидратация).

3. Замещение в боковой цепи гомологов бензола

Третья группа реакций касается только гомологов бензола — это замещение в боковой цепи.

Седьмое свойство в общем списке — галогенирование по альфа-атому углерода в боковой цепи.

Реакция происходит при нагревании или облучении и всегда только по альфа-углероду. При продолжении галогенирования, второй атом галогена снова встанет в альфа-положение.

4. Окисление гомологов бензола

Четвертая группа реакций — окисление.

Бензольное кольцо слишком прочное, поэтому бензол не окисляется перманганатом калия — не обесцвечивает его раствор. Это очень важно помнить.

Зато гомологи бензола окисляются подкисленным раствором перманганата калия при нагревании. И это восьмое химическое свойство.

Получается бензойная кислота. Наблюдается обесцвечивание раствора. При этом, какой бы длинной не была углеродная цепь заместителя, всегда происходит ее разрыв после первого атома углерода и альфа-атом окисляется до карбоксильной группы с образованием бензойной кислоты. Оставшаяся часть молекулы окисляется до соответствующий кислоты или, если это только один атом углерода, до углекислого газа.

Если гомолог бензола имеет больше одного углеводородного заместителя у ароматического кольца, то окисление происходит по тем же правилам — окисляется углерод, находящийся в альфа-положении.

В данном примере получается двухосновная ароматическая кислота, которая называется фталевая кислота.

Особым образом отмечу окисление кумола, изопропилбензола, кислородом воздуха в присутствии серной кислоты.

Это так называемый кумольный способ получения фенола. Как правило, сталкиваться с этой реакцией приходится в вопросах, касающихся получения фенола. Это промышленный способ.

Девятое свойство — горение, полное окисление кислородом. Бензол и его гомологи сгорают до углекислого газа и воды.

Запишем уравнение горения бензола в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле арена, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть (2n-6)/2, а значит n-3.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n-3 из воды, итого 3n-3. Слева атомов кислорода столько же — 3n-3, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть (3n-3)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания гомологов бензола в общем виде.

Арены (ароматические углеводороды) это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: C n H 2n–6 при n ≥ 6.

Химические свойства аренов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.).

При гидрировании бензола образуется циклогексан:

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре , под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран) .

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C) , то происходит замещение атомов водорода в боковом алкильном заместителе, а не в ароматическом кольце.

2. Реакции замещения

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl 3 , FeBr 3).

При взаимодействии с хлором на катализаторе AlCl 3 образуется хлорбензол:

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr 3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Мета -хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300 о С) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Например, при хлорировании этилбензола:

2.2. Нитрование

Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о -нитротолуол:

либо п -нитротолуол:

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl 3, FeBr 3 и др.) с образованием гомологов бензола.
  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.
  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO 3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C 6 H 6 + 15O 2 → 12CO 2 + 6H 2 O + Q

Уравнение сгорания аренов в общем виде:

C n H 2n–6 + (3n – 3)/2 O 2 → nCO 2 + (n – 3)H 2 O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. О кисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода , соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании , то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

4. Ориентирующее действие заместителей в бензольном кольце

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Типы заместителей в бензольном кольце

Заместители первого рода Заместители второго рода
орто — и пара -положение Дальнейшее замещение происходит преимущественно в мета -положение
Электронодонорные, повышают электронную плотность в бензольном кольце Электроноакцепторные, снижают электронную плотность в сопряженной системе.
  • алкильные заместители: СН 3 –, С 2 Н 5 – и др.;
  • гидроксил, амин: –ОН, –NН 2 ;
  • галогены: –Cl, –Br
  • нитро-группа:– NO 2 , – SO 3 Н;
  • карбонил – СНО;
  • карбоксил: – СООН, нитрил: – С N;
  • – CF 3

Арены - ароматические углеводороды, содержащие одно или несколько бензольных колец. Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда - бензол - C 6 H 6 . Общая формула их гомологического ряда - C n H 2n-6 .

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с двумя тройными связями не могла объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям, двойные связи в молекуле постоянно перемещают, поэтому правильнее рисовать их в виде кольца.

За счет двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp 2 гибридизации. Валентный угол - 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи - бензольному кольцу: бензол, метилбензол (толуол), этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей, то выбирают кратчайший путь между ними.


Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания;)


Получение аренов

Арены получают несколькими способами:


Химические свойства аренов

Арены - ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и раствор перманганата калия.


© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Физические свойства

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах.

Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

Бензол

C 6 H 6

5,5

80,1

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

Ксилол (диметилбензол)

С 6 Н 4 (СH 3) 2

орто-

25,18

144,41

мета-

47,87

139,10

пара-

13,26

138,35

Пропилбензол

С 6 Н 5 (CH 2) 2 CH 3

99,0

159,20

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3) 2

96,0

152,39

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

Бензол – легкокипящая ( t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Получение аренов (бензола и его гомологов)

В лаборатории

1. Сплавление солей бензойной кислоты с твёрдыми щелочами

C 6 H 5 -COONa + NaOH t → C 6 H 6 + Na 2 CO 3

бензоат натрия

2. Реакция Вюрца-Фиттинга : (здесь Г – галоген)

С 6 H 5 -Г + 2 Na + R -Г → C 6 H 5 - R + 2 Na Г

С 6 H 5 -Cl + 2Na + CH 3 -Cl → C 6 H 5 -CH 3 + 2NaCl

В промышленности

  • выделяют из нефти и угля методом фракционной перегонки, риформингом;
  • из каменноугольной смолы и коксового газа

1. Дегидроциклизацией алканов с числом атомов углерода больше 6:

C 6 H 14 t , kat →C 6 H 6 + 4H 2

2. Тримеризация ацетилена (только для бензола) – р. Зелинского :

3С 2 H 2 600° C , акт. уголь →C 6 H 6

3. Дегидрированием циклогексана и его гомологов:

Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов

C 6 H 12 t, kat →C 6 H 6 + 3H 2

C 6 H 11 -CH 3 t , kat →C 6 H 5 -CH 3 + 3H 2

метилциклогексантолуол

4. Алкилирование бензола (получение гомологов бензола) – р Фриделя-Крафтса .

C 6 H 6 + C 2 H 5 -Cl t, AlCl3 →C 6 H 5 -C 2 H 5 + HCl

хлорэтан этилбензол


Химические свойства аренов

I . РЕАКЦИИ ОКИСЛЕНИЯ

1. Горение (коптящее пламя):

2C 6 H 6 + 15O 2 t →12CO 2 + 6H 2 O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку):

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

5C 6 H 5 -C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 +28H 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

Упрощённо:

C 6 H 5 -CH 3 + 3O KMnO4 →C 6 H 5 COOH + H 2 O

Б) в нейтральной и слабощелочной до солей бензойной кислоты

C 6 H 5 -CH 3 + 2KMnO 4 → C 6 H 5 COO К + K ОН + 2MnO 2 + H 2 O

II . РЕАКЦИИ ПРИСОЕДИНЕНИЯ (труднее, чем у алкенов)

1. Галогенирование

C 6 H 6 +3Cl 2 h ν → C 6 H 6 Cl 6 (гексахлорциклогексан - гексахлоран)

2. Гидрирование

C 6 H 6 + 3H 2 t , Pt или Ni →C 6 H 12 (циклогексан)

3. Полимеризация

III . РЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм(легче, чем у алканов)

1. Галогенирование -

a ) бензола

C 6 H 6 + Cl 2 AlCl 3 → C 6 H 5 -Cl + HCl (хлорбензол)

C 6 H 6 + 6Cl 2 t ,AlCl3 →C 6 Cl 6 + 6HCl ( гексахлорбензол )

C 6 H 6 + Br 2 t,FeCl3 → C 6 H 5 -Br + HBr ( бромбензол )

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).

1) C 6 H 5 -CH 3 + Cl 2 h ν → C 6 H 5 -CH 2 -Cl + HCl

в) гомологов бензола в присутствии катализатора

C 6 H 5 -CH 3 + Cl 2 AlCl 3 → (смесь орта, пара производных) +HCl

2. Нитрование (с азотной кислотой)

C 6 H 6 + HO-NO 2 t, H2SO4 →C 6 H 5 -NO 2 + H 2 O

нитробензол - запах миндаля !

C 6 H 5 -CH 3 + 3HO-NO 2 t, H2SO4 С H 3 -C 6 H 2 (NO 2) 3 + 3H 2 O

2,4,6-тринитротолуол (тол, тротил)

Применение бензола и его гомологов

Бензол C 6 H 6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C 6 H 5 NO 2 (растворитель, из него получают анилин), хлорбензола C 6 H 5 Cl, фенола C 6 H 5 OH, стирола и т.д.

Толуол C 6 H 5 –CH 3 – растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C 6 H 4 (CH 3) 2 . Технический ксилол – смесь трех изомеров (орто -, мета - и пара -ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C 6 H 5 –CH(CH 3) 2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С 6 Сl 6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6 – инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C 6 H 5 – CH = CH 2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

ВИДЕО-ОПЫТЫ


ПРЦВШ (Ф) ФГБОУ ВПО

Кафедра «Пожарная безопасность»

Контрольная работа

по дисциплине «Теория горения и взрывов»

Задание № 1

Определить удельные теоретические количества и объем воздуха, необходимого для полного сгорания паров бензола. Условия, в которых находится воздух, характеризуются температурой Тв и давлением Рв, а пары бензола -- температурой Тг и давлением Рг. Результаты расчетов выразить в следующих единицах: ; ;;;

Исходные данные (N -- номер группы, n -- номер по списку студентов:

Тв=300+(-1) N *2*N-(-1) n *0.2*n= 277,6 K

Рв=?10 3 =95900 Па;

Тг=300?(?1) N ?2?N?(?1) n ?0,2?n= 321,6 К;

Рr=?10 3 =79400 Па.

С6Н6+7,5О2+7,5?3,76N2=6CO2+3pO+7,5?3,76N2+Qp (1),

где Qр - теплота химической реакции. Из данного уравнения можно определить стехиометрические коэффициенты бензола и молекулярного кислорода: Vг =1, V0 = 7,5

2. Удельное теоретическое количество воздуха -- число киломолей воздуха, которые необходимы для полного сгорания одного киломоля бензола, рассчитывается по формуле:

где 4,76 - количество воздуха, в котором содержится единица количества кислорода, = - отношение стехиометрических коэффициентов молекулярного кислорода (Vо) и бензола (Vг)

Подставляя в (г) значения Vо и Vг,получаем:

3. Объем воздуха, необходимого для полного сгорания одного киломоля бензола, определяется так:

где - объем одного киломоля воздуха при температуре Тв и давлением Рв. Значение рассчитывается по формуле

где 22,4 - мольный объем газа при нормальных условиях, Ро = 101325 Па -- нормальное давление, То = 273 К -- нормальная температура.

Подставляя Тв, То, Рв, Ро в (5), получаем

Удельный теоретический объем воздуха рассчитывается по формуле (4):

4. Объем воздуха, необходимого полного сгорания единицы объема газообразного горючего, определяется так:

где - объем одного киломоля горючего -- паров бензола при температуре Тг и давления Рг. Учитывая, что

и подставляя (8) и (5) в (7), получаем следующее выражение для удельного теоретического объема воздуха:

Вычисляем значение данного параметра процесса горения:

Объем воздуха, необходимого для полного сгорания одного килограмма бензола, определяется так:

где - мольная масса горючего -- масса одного киломоля бензола, выраженная в килограммах. Мольная масса бензола численно равна его молекулярному весу находится по формуле:

Ас?nc+Aн?nн, УiAi?ni (11)

где Ас и Ан - атомные веса углерода и водорода, nc и nн - числа атомов углерода в молекуле бензола. Подставляя значения Ас = 12, nc = 6, Ан = 1, nн = 6, получаем:

Удельный теоретический объем воздуха находим, подставляя значения n в и в формулу (10):

Результат расчетов:

Задание № 2

Определить удельные теоретические количество, объем и состав продуктов горения бензола, если известны коэффициент избытка воздуха в, температура Тп и давление Рп продуктов сгорания, температура Тг и давление Рг паров бензола. Результаты расчетов выразить в мольных долях (в процентах) и в следующих единицах: ; ;;

Исходные данные:

в=1,5+(?1) N ?0,1?N?(?1) n ?0,01?n = 0,2 ;

Рп=?10 3 = 68400 Па;

Тп=1600?(?1) N ?20?N?(?1) n ?2?n = 1816 К;

Тг=273?(?1) N ?2?N+(?1) n ?0,2?n = 295,4 К;

Рг=?10 3 = 111600 Па;

решение (N=11, n=2).

1. Запишем стехиометрическое уравнение реакции горения бензола в воздухе:

С 6 Н 6 +7,5О 2 +7,5?3,76N 2 =6CO 2 +3H 2 O+7,5?3,76N 2 +Qp , (1)

где Qp - теплота химической реакции. Из данного уравнения определяем следующие стехиометрические коэффициенты:

V CO2 =6 , V pO =3 , V C6H6 =1 , V O2 =7,5 , V N2 =7,5?3,76

2. Определяем расчетное количество продуктов сгорания одного киломоля горючего:

Подставляя в (2) значения стехиометрических коэффициентов продуктов сгорания и горючего, получаем:

3. Удельное теоретическое количество воздуха -- число киломолей воздуха, необходимого для полного сгорания одного киломоля горючего, определим с помощью формулы:

Где 4,76 - количество воздуха, в котором содержится единица количества кислорода,

Отношение стехиометрических коэффициентов молекулярного кислорода и бензола.

Подставляя в (4) значения V O2 =7,5 и V C6H6 =1 , получаем:

4. Избыточное количество воздуха, которое приходится на 1 Кмоль горючего, определяется выражением:

бензол пар сгорание воздух

Подставляя в данное выражение значения

37,7(0,2-1)=30,16(7)

5. Общее количество продуктов сгорания единицы количества вещества горючего определяется суммой:

После подстановки значений и получаем:

6. Мольные доли продуктов сгорания, выраженные в процентах, определяются так:

В формулах (9) для мольных долей азота и кислорода в продуктах сгорания 0,79 и 0,21 -- мольные доли данных веществ в воздухе, избыток которого приводит к увеличению доли азота и появлению кислорода в продуктах сгорания.

7. Для определения удельных объемов и продуктов сгорания необходимо рассчитать их мольный объем -- объем одного киломоля газа при условиях, в которых находятся продукты:

где 22,4 - объем одного киломоля газа при нормальных условиях, Т 0 =273К - нормальная температура, Ро=101325Па - нормальное давление.

Подставляя в (10) значения,Ро,То, получаем:

Объем продуктов, которые образуются при сгорании одного килограмма горючего, без учета избытка воздуха, рассчитывается так:

где - мольная масса горючего -- масса одного киломоля бензола, выраженная в килограммах. Мольная масса бензола находится по формуле:

где Ас и Ан - атомные веса углерода (12) и водорода (1), n c и n н - числа атомов углерода (6) и водорода (6) в малекулах бензола (С 6 Н 6).

Подставляя значения, и в (12) получаем

Избыточный объем воздуха, приходящийся на 1 килограмм горючего, определяется так:

где - объем одного киломоля избыточного воздуха, который находится в составе продуктов сгорания. Так как температура и давление избыточного воздуха соответствуют температуре и давлению продуктов сгорания, то = =220,7 .

Подставляя данное значение, а такжев в (14), получим:

Для расчета удельного объема продуктов полного сгорания горючего будем считать, что пары бензола имеют температуру Тг при давлении:

где - объем одного киломоля паров бензола при температуре Тг и давлении Рг. Мольный объем горючего рассчитывается по формуле:

Подставляя полученное значение, а такие значения и в (17), получаем:

Избыточный объем воздуха, приходящийся на один кубический метр паров бензола, определяется так:

Подстановка в (20) значений =30,16 , =и

дает следующий результат:

Общий удельный объем продуктов сгорания с учетом избытка воздуха определяется суммой

Результат расчетов:

Х СО2 = % ; Х Н2О =4,4 % ; Х N2 =%; Х О2 =11,7%


Подобные документы

    Расчет коэффициента горючести нитробензола С6Н5NО2 и сероуглерода CS2. Уравнение реакции горения пропилацетата в воздухе. Расчет объема воздуха и продуктов горения при сгорании горючего газа. Определение температуры вспышки толуола по формуле В. Блинова.

    контрольная работа , добавлен 08.04.2017

    Расчет объема воздуха и продуктов горения, образующихся при сгорании вещества. Уравнение реакции горения этиленгликоля в воздухе. Горение смеси горючих газов. Расчет адиабатической температуры горения для стехиометрической смеси. Горение пропанола.

    контрольная работа , добавлен 17.10.2012

    Вид горения и его основные параметры. Химическое превращение горючего и окислителя в продукты горения. Уравнения материального и теплового баланса реакции горения. Влияние коэффициента избытка воздуха на состав продуктов горения и температуру горения.

    контрольная работа , добавлен 17.01.2013

    Определение объема воздуха, необходимого для полного сгорания единицы массы горючего вещества. Состав продуктов сгорания единицы масс горючего вещества. Пределы распространения пламени газо-, паро-, пылевоздушных смесей. Давление взрывчатого разложения.

    курсовая работа , добавлен 23.12.2013

    Разработка мер предотвращения возникновения пожаров и взрывов, оценка условий их развития и подавления. Понятие скорости выгорания, способ ее определения. Порядок составления уравнения реакции горения. Расчет объема воздуха, необходимого для возгорания.

    курсовая работа , добавлен 10.07.2014

    Определение состава продуктов полного сгорания газа. Расчет адиабатной температуры горения газовой смеси при постоянном объеме и при постоянном давлении. Кинетические константы реакции самовоспламенения природного газа. Предел воспламенения газовой смеси.

    курсовая работа , добавлен 19.02.2014

    Характеристика промышленных способов алкилирования бензола пропиленом. Принципы алкилирования бензола олефинами в химической технологии. Проблемы проектирования технологических установок алкилирования бензола. Описание технологии процесса производства.

    дипломная работа , добавлен 15.11.2010

    Горение как мощный процесс окисления. Типы горения: тление и горение с пламенем. Взрыв как частный случай горения. Электрические свойства пламени. Многообразие продуктов горения как следствие неполного сгорания топлива. Фильтрация дыма через воду.

    научная работа , добавлен 29.07.2009

    Определение объема воздуха необходимого для полного сгорания заданного количества пропана. Вычисление изменения энтальпии, энтропии и энергии Гиббса, при помощи следствий из закона Гесса. Определение молярных масс эквивалентов окислителя и восстановителя.

    контрольная работа , добавлен 08.02.2012

    Способы определения расхода поглотительного масла, концентрации бензола в поглотительном масле, выходящем из абсорбера. Расчет диаметра и высоты насадочного абсорбера. Определение требуемой поверхности нагрева в кубе колонны и расхода греющего пара.