Произведение совместных и несовместных событий. Независимость событий. Теорема умножения вероятностей. Вероятность произведения событий

Теорема умножения вероятностей двух произвольных событий: вероятность произведения двух произвольных событий равна произведению вероятности одного из событий на условную вероятность другого события, при условии, что первое уже произошло:

P(AB)=P(A)P(B|A) = P(B)P(A|B). (10)

Доказательство (не строгое): докажем теорему умножения для схемы шансов (равновероятных гипотез). Пусть возможные исходы опыта являются n шансами. Предположим, что событию A благоприятны m шансов (на рис. 11 имеют штриховку); событию B - k шансов; одновременно событиям A и B (AB) - l шансов (на. рис. 11 имеют светлую штриховку).

Рисунок 11

Очевидно, что m+k-l=n. По классическому способу вычисления вероятностей P(AB)=l/n; P(A)=m/n; P(B)=k/n. А вероятность P(B|A)=l/m, поскольку известно, что один из m шансов события A произошел, а событию B благоприятны l подобных шансов. Подставив данные выражения в теорему (10), получим тождество l/n=(m/n)(l/m). Теорема доказана.

Теорема умножения вероятностей трёх произвольных событий:

P(ABC)=|AB=D|=P(DC)=P(D)P(C|D)=P(AB)P(C|AB)=P(A)P(B|A)P(C|AB).(11)

По аналогии можно записать теоремы умножения вероятностей для большего количества событий.

Следствие 1. Если событие A не зависит от B, то и событие B не зависит от A.

Доказательство. Т.к. событие A не зависит от B, то по определению независимости событий P(A)=P(A|B)=P(А|). Требуется доказать, что P(B)=P(B|A).

По теореме умножения P(AB)=P(A)P(B|A)=P(B)P(A|B), следовательно, P(A)P(B|A)=P(B)P(A). Предполагая, что P(A)>0, разделим обе части равенства на P(A) и получим: P(B)=P(B|A).

Из следствия 1 вытекает, что два события независимы, если появление одного из них не изменяет вероятность появления другого. На практике, зависимыми являются события (явления), связанные между собой причинно-следственной связью.

Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий. Т.е. если события A и B независимы, то

P(AB)=P(A)P(B). (11)

Доказательство очевидно, поскольку для независимых событий P(B|A)=P(B).

Тождество (11) наряду с выражениями (12) и (13) являются необходимыми и достаточными условиями независимости двух случайных событий A и B.

P(A)=P(A|B); P(A)=P(А|); P(A|B)=P(А|); (12)

P(B)=P(B|A); P(B)=P(B|); P(B|A)=P(B|). (13)

Надёжность некоторой системы повышается двукратным резервированием (см. рис. 12). Вероятность безотказной работы первой подсистемы (в течение некоторой наработки) равна 0.9, второй - 0,8. Определить вероятность отказа системы в целом в течение заданной наработки, если отказы подсистем независимы.

Рисунок 12 - Двукратно резервированная система

E: исследование безотказности двукратно резервированной системы управления;

A 1 ={безотказная работа (в течение некоторой наработки) первой подсистемы}; P(A 1)=0,9;

A 2 ={безотказная работа второй подсистемы}; P(A 2)=0,8;

A={безотказная работа системы в целом}; P(A)=?

Решение. Выразим событие A через события A 1 и A 2 вероятности которых известны. Поскольку для безотказной работы системы достаточно безотказной работы хотя бы одного из её подсистем, то очевидно A=A 1 A 2.

Применяя теорему сложения вероятностей получим: P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1 A 2). Вероятность совместного наступления событий A 1 и A 2 определим по теореме умножения вероятностей: P(A 1 A 2)=P(A 1)P(A 2 |A 1). Учитывая, что (по условию) события A 1 и A 2 независимы, P(A 1 A 2)=P(A 1)P(A 2). Таким образом, вероятность безотказной работы системы равна P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1)P(A 2)=0,9+0,8-0,90,8=0,98.

Ответ: вероятность безотказной работы системы в течение заданной наработки равна 0,98.

Замечание. В примере 20 возможен другой способ определения события A через события A 1 и A 2: , т.е. отказ системы возможен при одновременном отказе обоих её подсистем. Применяя теорему умножения вероятностей независимых событий получим следующее значение вероятности отказа системы: . Следовательно, вероятность безотказной работы системы в течение заданной наработки равна.

Пример 21 (парадокс независимости)

E: бросается две монеты.

A={выпадение герба на первой монете}, P(A)=0,5;

B={выпадение герба на второй монете}, P(B)=0,5;

C={выпадение герба только на одной из монет}, P(C)=0,5.

События A, B и C попарно независимы, поскольку выполняются условия независимости двух событий (11)-(13):

P(A)=P(A|B)=0,5; P(B)=P(B|C)=0,5; P(C)=P(C|A)=0,5.

Однако P(A|BC)=0P(A); P(A|C)=1P(A); P(B|AC)=0P(B); P(C|AB)=0P(C).

Замечание. Попарная независимость случайных событий не означает их независимость в совокупности.

Случайные события называются независимыми в совокупности, если вероятность наступления каждого из них не изменяется с наступлением любой комбинации остальных событий. Для случайных событий A 1, A 2, … A n, независимых в совокупности, справедлива следующая теорема умножения вероятностей (необходимое и достаточное условие независимости в совокупности n случайных событий):

P(A 1 A 2 …A n)=P(A 1)P(A 2)…P(A n). (14)

Для примера 21 условие (14) не выполняется: P(ABC)=0P(A)P(B)P(C)=0,50,50,5=0,125. Следовательно, попарно независимые события A, B и C зависимы в совокупности.

Пример 22

В коробке находятся 12 транзисторов, три из которых неисправны. Для сборки двухкаскадного усилителя случайным образом извлекаются два транзистора. С какой вероятностью собранный усилитель будет неисправен?

E: выбор двух транзисторов из коробки с 9-ю исправными и 3-мя неисправными транзисторами;

A={неисправность собранного усилителя}; P(A)=?

Решение. Очевидно, что собранный двухкаскадный усилитель будет неисправен, если будет неисправен хотя бы один из двух отобранных для сборки транзисторов. Поэтому переопределим событие A следующим образом:

A={хотя бы один из двух отобранных транзисторов неисправен};

Определим следующие вспомогательные случайные события:

A 01 ={неисправен только первый из двух отобранных транзисторов};

A 10 ={неисправен только второй из двух отобранных транзисторов};

A 00 ={неисправны оба отобранных транзистора};

Очевидно, что A=A 01 A 10 A 00 (для наступления события A необходимо наступление хотя бы одного из событий A 01 или A 10 или A 00), причем события A 01, A 10 и A 00 несовместны (вместе произойти не могут), поэтому вероятность события найдем по теореме сложения вероятностей несовместных событий:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00).

Для определения вероятностей событий A 01, A 10 и A 00 введем вспомогательные события:

B 1 ={первый отобранный транзистор неисправен};

B 2 ={второй отобранный транзистор неисправен}.

Очевидно, что A 01 =B 1 ; A 10 =B 2 ; A 00 =B 1 B 2 ; поэтому для определения вероятностей событий A 01, A 10 и A 00 применим теорему умножения вероятностей.

P(A 01)=P(B 1)=P(B 1)P(|B 1),

где P(B 1) - вероятность того, что первый отобранный транзистор будет неисправен; P(|B 1) - вероятность того, что второй отобранный транзистор будет исправен, при условии, что первый отобранный транзистор неисправен. Применяя классический способ вычисления вероятностей, P(B 1)=3/12, а P(|B 1)=9/11 (поскольку после выбора первого неисправного транзистора в коробке осталось 11 транзисторов, 9 из которых исправны).

Таким образом, P(A 01)=P(B 1)=P(B 1)P(|B 1)=3/129/11=0,20(45). По аналогии:

P(A 10)=P(B 2)=P()P(B 2 |)=9/123/11=0,20(45);

P(A 00)=P(B 1 B 2)=P(B 1)P(B 2 |B 1)=3/122/11=0,041(6).

Подставим полученные значения вероятностей A 01, A 10 и A 00 в выражение для вероятности события A:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00)=3/129/11+9/123/11+3/122/11=0,45(45).

Ответ: вероятность того, что собранный усилитель будет неисправен, равна 0,4545.

Изучение теории вероятности начинается с решения задач на сложение и умножение вероятностей. Стоит сразу упомянуть, что студент при освоении данной области знаний может столкнуться с проблемой: если физические или химические процессы можно представить визуально и понять эмпирически, то уровень математической абстракции очень высок, и понимание здесь приходит только с опытом.

Однако игра стоит свеч, ведь формулы - как рассматриваемые в данной статье, так и более сложные - используются сегодня повсеместно и вполне могут пригодиться в работе.

Происхождение

Как ни странно, толчком к развитию данного раздела математики стали… азартные игры. Действительно, игра в кости, бросание монетки, покер, рулетка - это типичные примеры, в которых используются сложение и умножение вероятностей. На примере задач в любом учебнике это можно увидеть наглядно. Людям было интересно узнать, как увеличить свои шансы на победу, и, надо сказать, некоторые в этом преуспели.

Например, уже в XXI веке один человек, чьего имени раскрывать мы не будем, использовал эти накопленные веками знания, чтобы буквально «обчистить» казино, выиграв в рулетку несколько десятков миллионов долларов.

Впрочем, несмотря на повышенный интерес к предмету, только к XX веку была разработана теоретическая база, делающая «теорвер» полноценной Сегодня же практически в любой науке можно встретить расчёты, использующие вероятностные методы.

Применимость

Важным моментом при использовании формул сложения и умножения вероятностей, условной вероятности является выполнимость центральной предельной теоремы. В противном случае хоть это и может и не осознаваться студентом, все вычисления, какими бы правдоподобными они ни казались, будут некорректны.

Да, у высокомотивированного учащегося возникает соблазн использовать новые знания при каждом удобном случае. Но в данном случае следует несколько притормозить и строго очертить рамки применимости.

Теория вероятности имеет дело со случайными событиями, которые в эмпирическом плане представляют собой результаты экспериментов: мы можем бросать кубик с шестью гранями, вытаскивать карту из колоды, предсказывать количество бракованных деталей в партии. Однако в некоторых вопросах использовать формулы из этого раздела математики категорически нельзя. Особенности рассмотрения вероятностей события, теорем сложения и умножения событий мы обсудим в конце статьи, а пока обратимся к примерам.

Основные понятия

Под случайным событием подразумевается некоторый процесс или результат, который может проявиться, а может и не проявиться в результате эксперимента. Например, мы подбрасываем бутерброд - он может упасть маслом вверх или маслом вниз. Любой из двух исходов будет являться случайным, и мы заранее не знаем, какой из них будет иметь место.

При изучении сложения и умножения вероятностей нам понадобятся ещё два понятия.

Совместными называются такие события, появление одного из которых не исключает появления другого. Скажем, два человека одновременно стреляют по мишени. Если один из них произведет успешный никак не отразится на возможности второго попасть в «яблочко» или промахнуться.

Несовместными будут такие события, появление которых одновременно является невозможным. Например, вытаскивая из коробки только один шарик, нельзя достать сразу и синий, и красный.

Обозначение

Понятие вероятности обозначается латинской заглавной буквой P. Далее в скобках следуют аргументы, обозначающие некоторые события.

В формулах теоремы сложения, условной вероятности, теоремы умножения вы увидите в скобках выражения, например: A+B, AB или A|B. Рассчитываться они будут различными способами, к ним мы сейчас и обратимся.

Сложение

Рассмотрим случаи, в которых используются формулы сложения и умножения вероятностей.

Для несовместных событий актуальна самая простая формула сложения: вероятность любого из случайных исходов будет равна сумме вероятностей каждого из этих исходов.

Предположим, что есть коробка с 2 синими, 3 красными и 5 жёлтыми шариками. Итого в коробке имеется 10 предметов. Какова доля истинности утверждения, что мы вытащим синий или красный шар? Она будет равна 2/10 + 3/10, т. е. пятьдесят процентов.

В случае же несовместных событий формула усложняется, поскольку добавляется дополнительное слагаемое. Вернемся к нему через один абзац, после рассмотрения ещё одной формулы.

Умножение

Сложение и умножение вероятностей независимых событий используются в разных случаях. Если по условию эксперимента нас устраивает любой из двух возможных исходов, мы посчитаем сумму; если же мы хотим получить два некоторых исхода друг за другом, мы прибегнем к использованию другой формулы.

Возвращаясь к примеру из предыдущего раздела, мы хотим вытащить сначала синий шарик, а затем - красный. Первое число нам известно - это 2/10. Что происходит дальше? Шаров остается 9, красных среди них всё столько же - три штуки. Согласно расчётам получится 3/9 или 1/3. Но что теперь делать с двумя числами? Правильный ответ - перемножать, чтобы получилось 2/30.

Совместные события

Теперь можно вновь обратиться к формуле суммы для совместных событий. Для чего мы отвлекались от темы? Чтобы узнать, как перемножаются вероятности. Сейчас нам это знание пригодится.

Мы уже знаем, какими будут первые два слагаемых (такие же, как и в рассмотренной ранее формуле сложения), теперь же потребуется вычесть произведение вероятностей, которое мы только что научились рассчитывать. Для наглядности напишем формулу: P(A+B) = P(A) + P(B) - P(AB). Получается, что в одном выражении используется и сложение, и умножение вероятностей.

Допустим, мы должны решить любую из двух задач, чтобы получить зачёт. Первую мы можем решить с вероятностью 0,3, а вторую - 0,6. Решение: 0,3 + 0,6 - 0,18 = 0,72. Заметьте, просто просуммировать числа здесь будет недостаточно.

Условная вероятность

Наконец, существует понятие условной вероятности, аргументы которой обозначаются в скобках и разделяются вертикальной чертой. Запись P(A|B) читается следующим образом: «вероятность события A при условии события B».

Посмотрим пример: друг дает вам некоторый прибор, пусть это будет телефон. Он может быть сломан (20 %) или исправен (80 %). Любой попавший в руки прибор вы в состоянии починить с вероятностью 0,4 либо не в состоянии этого сделать (0,6). Наконец, если прибор находится в рабочем состоянии, вы можете дозвониться до нужного человека с вероятностью 0,7.

Легко заметить, как в данном случае проявляется условная вероятность: вы не сможете дозвониться до человека, если телефон сломан, а если он исправен, вам не требуется его чинить. Таким образом, чтобы получить какие-либо результаты на «втором уровне», нужно узнать, какое событие выполнилось на первом.

Расчёты

Рассмотрим примеры решения задач на сложение и умножение вероятностей, воспользовавшись данными из предыдущего абзаца.

Для начала найдем вероятность того, что вы почините отданный вам аппарат. Для этого, во-первых, он должен быть неисправен, а во-вторых, вы должны справиться с починкой. Это типичная задача с использованием умножения: получаем 0,2*0,4 = 0,08.

Какова вероятность, что вы сразу дозвонитесь до нужного человека? Проще простого: 0,8*0,7 = 0,56. В этом случае вы обнаружили, что телефон исправен и успешно совершили звонок.

Наконец, рассмотрим такой вариант: вы получили сломанный телефон, починили его, после чего набрали номер, и человек на противоположном конце взял трубку. Здесь уже требуется перемножение трёх составляющих: 0,2*0,4*0,7 = 0,056.

А что делать, если у вас сразу два нерабочих телефона? С какой вероятностью вы почините хотя бы один из них? на сложение и умножение вероятностей, поскольку используются совместные события. Решение: 0,4 + 0,4 - 0,4*0,4 = 0,8 - 0,16 = 0,64. Таким образом, если вам в руки попадёт два сломанных аппарата, вы справитесь с починкой в 64% случаев.

Внимательное использование

Как говорилось в начале статьи, использование теории вероятности должно быть обдуманным и осознанным.

Чем больше серия экспериментов, тем ближе подходит теоретически предсказываемое значение к полученному на практике. Например, мы бросаем монетку. Теоретически, зная о существовании формул сложения и умножения вероятностей, мы можем предсказать, сколько раз выпадет «орёл» и «решка», если мы проведем эксперимент 10 раз. Мы провели эксперимент, и по стечению обстоятельств соотношение выпавших сторон составило 3 к 7. Но если провести серию из 100, 1000 и более попыток, окажется, что график распределения всё ближе подбирается к теоретическому: 44 к 56, 482 к 518 и так далее.

А теперь представьте, что данный эксперимент проводится не с монеткой, а с производством какого-нибудь новейшего химического вещества, вероятности получения которого мы не знаем. Мы провели бы 10 экспериментов и, не получив успешного результата, могли бы обобщить: «вещество получить невозможно». Но кто знает, проведи мы одиннадцатую попытку - достигли бы мы цели или нет?

Таким образом, если вы обращаетесь к неизведанному, к неисследованной области, теория вероятности может оказаться неприменима. Каждая последующая попытка в этом случае может оказаться успешной и обобщения типа «X не существует» или «X является невозможным» будут преждевременны.

Заключительное слово

Итак, мы рассмотрели два вида сложения, умножение и условные вероятности. При дальнейшем изучении данной области необходимо научиться различать ситуации, когда используется каждая конкретная формула. Кроме того, нужно представлять, применимы ли вообще вероятностные методы при решении вашей задачи.

Если вы будете практиковаться, то через некоторое время начнете осуществлять все требуемые операции исключительно в уме. Для тех, кто увлекается карточными играми, этот навык можно считать крайне ценным - вы значительно увеличите свои шансы на победу, всего лишь рассчитывая вероятность выпадения той или иной карты или масти. Впрочем, полученным знаниям вы без труда найдете применение и в других сферах деятельности.

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле.

Пусть А и В – два события, рассматриваемые в данном испытании. При этом наступление одного из событий может влиять на возможность наступления другого. Например, наступление события А может влиять на событие В или наоборот. Для учёта такой зависимости одних событий от других вводится понятие условной вероятности.

Определение. Если вероятность события В находится при условии, что событие А произошло, то получаемая вероятность события В называется условной вероятностью события В . Для обозначения такой условной вероятности используются символы: р А (В ) или р (В / А ).

Замечание 2 . В отличие от условной вероятности, рассматривается и “безусловная” вероятность, когда какие-либо условия наступления некоторого события В отсутствуют.

Пример . В урне 5 шаров, среди которых 3 красных и 2 синих. Поочерёдно из неё извлекают по одному шару с возвратом и без возврата. Найти условную вероятность извлечения во второй раз красного шара при условии, что в первый раз извлечён: а) красный шар; б) синий шар.

Пусть событие А – извлечение красного шара в первый раз, а событие В – извлечение красного шара во второй раз. Очевидно, что р (А ) = 3 / 5; тогда в случае, когда вынутый 1-й раз шар возвращается в урну, р (В )=3/5. В случае же когда вынутый шар не возвращается, вероятность извлечения красного шара р (В ) зависит от того, какой шар был извлечён в первый раз – красный (событие А ) или синий (событие ). Тогда в первом случае р А (В ) = 2 / 4, а во втором (В ) = 3 / 4.

Теорема умножения вероятностей событий, одно из которых совершается при условии совершения другого

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

р (А ∙ В ) = р (А ) ∙ р А (В ) . (1.7)

Доказательство. Действительно, пусть n общее число равновозможных и несовместных (элементарных) исходов испытания. И пусть n 1 – число исходов, благоприятствующих событию А , которое наступает вначале, а m – число исходов, в которых наступает событие В в предположении, что событие А наступило. Таким образом, m – это число исходов, благоприятствующих событию В. Тогда получим:

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других, причём условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример. В команде из 10 спортсменов 4 мастера спорта. По жеребьёвке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные спортсмены – мастера спорта?

Решение. Приведём задачу к “урновой” модели, т.е. будем считать, что в урне, содержащей 10 шаров, имеется 4 красных шара и 6 белых. Из этой урны наудачу извлекаются 3 шара (выборка S = 3). Пусть событие А состоит в извлечении 3-х шаров. Задачу можно решить двумя способами: по классической схеме и по формуле (1.9).

Первый способ, основанный на формуле комбинаторики:

Второй способ (по формуле (1.9)). Из урны последовательно без возвращения извлекаются 3 шара. Пусть А 1 – первый извлечённый шар красный, А 2 – второй извлечённый шар красный, А 3 – третий извлечённый шар красный. Пусть также событие А означает, что все 3 извлечённых шара – красные. Тогда: А = А 1 ∙ (А 2 / А 1) ∙ А 3 / (А 1 ∙ А 2), т.е.

Пример. Пусть из совокупности карточек а, а, р, б, о, т последовательно извлекаются карточки по одной. Какова вероятность получения слова “работа ” при последовательном складывании их в одну строку слева направо?

Пусть В – событие, при котором получается заявленное слово. Тогда по формуле (1.9) получим:

р (В ) = 1/6 ∙ 2/5 ∙ 1/4 ∙ 1/3 ∙ 1/2 ∙ 1/1 = 1/360.

Теорема умножения вероятностей приобретает наиболее простой вид, когда произведение образуется независимыми друг от друга событиями.

Определение. Событие В называется независимым от события А , если его вероятность не меняется от того, произошло событие А или нет. Два события называются независимыми (зависимыми), если появление одного из них не изменяет (изменяет) вероятность появления другого. Таким образом, для независимых событий р(В/ A ) = р (В ) или = р (В ), а для зависимых событий р (В/ A )