Производная сложной функции инвариантность формы первого дифференциала. Инвариантность формы дифференциала. Основные теоремы дифференциального исчисления

Дифференциал функции

Функция называется дифференцируемой в точке , предельной для множества E , если ее приращение Δf (x 0), соответствующее приращению аргумента x , может быть представлено в виде

Δf (x 0) = A (x 0)(x - x 0) + ω (x - x 0), (1)

где ω (x - x 0) = о (x - x 0) при x x 0 .

Отображение , называется дифференциалом функции f в точке x 0 , а величина A (x 0)h - значением дифференциала в этой точке.

Для значения дифференциала функции f принято обозначение df или df (x 0), если требуется знать, в какой именно точке он вычислен. Таким образом,

df (x 0) = A (x 0)h .

Разделив в (1) на x - x 0 и устремив x к x 0 , получим A (x 0) = f" (x 0). Поэтому имеем

df (x 0) = f" (x 0)h . (2)

Сопоставив (1) и (2), видим, что значение дифференциала df (x 0) (при f" (x 0) ≠ 0) есть главная часть приращения функции f в точке x 0 , линейная и однородная в то же время относительно приращения h = x - x 0 .


Критерий дифференцируемости функции

Для того чтобы функция f являлась дифференцируемой в данной точке x 0 , необходимо и достаточно, чтобы она имела в этой точке конечную производную.


Инвариантность формы первого дифференциала

Если x - независимая переменная, то dx = x - x 0 (фиксированное приращение). В этом случае имеем

df (x 0) = f" (x 0)dx . (3)

Если x = φ (t ) - дифференцируемая функция, то dx = φ" (t 0)dt . Следовательно,

По определению дифференциал (первый дифференциал) функции вычисляется по формуле
если– независимая переменная.

ПРИМЕР .

Покажем, что форма первого дифференциала остается неизменной (является инвариантной) и в том случае, когда аргумент функции сам является функцией, то есть для сложной функции
.

Пусть
дифференцируемы, тогда по определению

Кроме того, что и требовалось доказать.

ПРИМЕРЫ .

Доказанная инвариантность формы первого дифференциала позволяет считать, что
то естьпроизводная равна отношению дифференциала функции к дифференциалу ее аргумента , независимо от того, является ли аргумент независимой переменной или функцией.

Дифференцирование функции, заданной параметрически

Пусть Если функция
имеет на множествеобратную, то
Тогда равенства
определяют на множествефункцию, заданную параметрически, параметр (промежуточная переменная).

ПРИМЕР . Построить график функции
.

y

О 1

x

Построенная кривая называется циклоидой (рис. 25) и является траекторией точки на окружности радиуса 1, которая катится без скольжения вдоль оси ОХ.

ЗАМЕЧАНИЕ . Иногда, но не всегда, из параметрических уравнений кривой можно исключить параметр.

ПРИМЕРЫ .
– параметрические уравнения окружности, так как, очевидно,

–параметрические уравнения эллипса, так как

–параметрические уравнения параболы

Найдем производную функции, заданной параметрически:

Производная функции, заданной параметрически, – также функция, заданная параметрически: .

ОПРЕДЕЛЕНИЕ . Второй производной функции называется производная от ее первой производной.

Производной -го порядка называется производная от ее производной порядка
.

Обозначают производные второго и -го порядка так:

Из определения второй производной и правила дифференцирования параметрически заданной функции следует, что
Для вычисления третьей производной надо представить вторую производную в виде
и воспользоваться еще раз полученным правилом. Производные старших порядков вычисляются аналогично.

ПРИМЕР . Найти производные первого и второго порядков функции

.

Основные теоремы дифференциального исчисления

ТЕОРЕМА (Ферма). Пусть функция
имеет в точке
экстремум. Если существует
, то

ДОКАЗАТЕЛЬСТВО . Пусть
, например, – точка минимума. По определению точки минимума существует окрестность этой точки
, в пределах которой
, то есть
– приращение
в точке
. По определению
Вычислим односторонние производные в точке
:

по теореме о предельном переходе в неравенстве,

так как

, так как
Но по условию
существует, поэтому левая производная равна правой, а это возможно лишь если

Предположение о том, что
– точка максимума, приводит к тому же.

Геометрический смысл теоремы:

ТЕОРЕМА (Ролля). Пусть функция
непрерывна
, дифференцируема
и
тогда существует
такая, что

ДОКАЗАТЕЛЬСТВО . Так как
непрерывна
, то по второй теореме Вейерштрасса она достигает на
своих наибольшего
и наименьшего
значений либо в точках экстремума, либо на концах отрезка.

1. Пусть
, тогда

2. Пусть
Так как
то либо
, либо
достигается в точке экстремума
, но по теореме Ферма
Что и требовалось доказать.

ТЕОРЕМА (Лагранжа). Пусть функция
непрерывна
и дифференцируема
, тогда существует
такая, что
.

Геометрический смысл теоремы:

Так как
, то секущая параллельна касательной. Таким образом, теорема утверждает, что существует касательная, параллельная секущей, проходящей через точки А и В.

ДОКАЗАТЕЛЬСТВО . Через точки А
и В
проведем секущую АВ. Ее уравнение
Рассмотрим функцию

–расстояние между соответствующими точками на графике и на секущей АВ.

1.
непрерывна
как разность непрерывных функций.

2.
дифференцируема
как разность дифференцируемых функций.

3.

Значит,
удовлетворяет условиям теоремы Ролля, поэтому существует
такая, что

Теорема доказана.

ЗАМЕЧАНИЕ. Формула называетсяформулой Лагранжа .

ТЕОРЕМА (Коши). Пусть функции
непрерывны
, дифференцируемы
и
, тогда существует точка
такая, что
.

ДОКАЗАТЕЛЬСТВО . Покажем, что
. Если бы
, то функция
удовлетворяла бы условию теоремы Ролля, поэтому существовала бы точка
такая, что
– противоречие условию. Значит,
, и обе части формулы определены. Рассмотрим вспомогательную функцию.

непрерывна
, дифференцируема
и
, то есть
удовлетворяет условиям теоремы Ролля. Тогда существует точка
, в которой
, но

что и требовалось доказать.

Доказанная формула называется формулой Коши .

ПРАВИЛО Лопиталя (теорема Лопиталя-Бернулли). Пусть функции
непрерывны
, дифференцируемы
,
и
. Кроме того, существует конечный или бесконечный
.

Тогда существует

ДОКАЗАТЕЛЬСТВО . Так как по условию
, то доопределим
в точке
, полагая
Тогда
станут непрерывными
. Покажем, что

Предположим, что
тогда существует
такая, что
, так как функция
на
удовлетворяет условиям теоремы Ролля. Но по условию
– противоречие. Поэтому

. Функции
удовлетворяют условиям теоремы Коши на любом отрезке
, который содержится в
. Напишем формулу Коши:

,
.

Отсюда имеем:
, так как если
, то
.

Переобозначая переменную в последнем пределе, получим требуемое:

ЗАМЕЧАНИЕ 1 . Правило Лопиталя остается справедливым и в том случае, когда
и
. Оно позволяет раскрывать не только неопределенность вида, но и вида:

.

ЗАМЕЧАНИЕ 2 . Если после применения правила Лопиталя неопределенность не раскрылась, то его следует применить еще раз.

ПРИМЕР .

ЗАМЕЧАНИЕ 3 . Правило Лопиталя – универсальный способ раскрытия неопределенностей, но существуют пределы, раскрыть которые можно, применив лишь один из изученных ранее частных приемов.

Но, очевидно,
, так как степень числителя равна степени знаменателя, и предел равен отношению коэффициентов при старших степенях

Выражение полного дифференциала функции нескольких переменных имеет тот же вид вне зависимости от того, являются ли u и v независимыми переменными или функциями других независимых переменных.

Доказательство опирается на формулу полного дифференциала

Что и требовалось доказать.

5.Полная производная функции - производная функции по времени вдоль траектории. Пусть функция имеет вид и ее аргументы зависят от времени: . Тогда , где - параметры задающие траекторию. Полная производная функции (в точке ) в таком случае равна частной производной по времени (в соответствующей точке ) и может быть вычислена по формуле:

где - частные производные. Следует отметить, что обозначение является условным и не имеет отношения к делению дифференциалов. Кроме того, полная производная функции зависит не только от самой функции, но и от траектории.

Например, полная производная функции :

Здесь нет так как сама по себе («явно») не зависит от .

Полный дифференциал

Полный дифференциал

функции f (x, у, z,...) нескольких независимых переменных - выражение

в случае, когда оно отличается от полного приращения

Δf = f (x + Δx, y + Δy, z + Δz,…) - f (x, y, z, …)

на величину, бесконечно малую по сравнению с

Касательная плоскость к поверхности

(X, Y, Z - текущие координаты точки на касательной плоскости; - радиус-вектор этой точки; x, y, z - коодинаты точки касания (соответственно для нормали); - касательные векторы к координатным линиям соответственно v = const; u = const; )

1.

2.

3.

Нормаль к поверхности

3.

4.

Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.

Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение Dy ее представимо в виде

D y = f"(x)D x +a (D x) D x,

где первое слагаемое линейно относительно Dx, а второе является в точке Dx = 0 бесконечно малой функцией более высокого порядка, чем Dx. Если f"(x)№ 0, то первое слагаемое представляет собой главную часть приращения Dy. Эта главная часть приращения является линейной функцией аргумента Dx и называется дифференциалом функции y = f(x). Если f"(x) = 0, то дифференциал функции по определению считается равным нулю.

Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно Dx часть приращения Dy, равная произведению производной на приращение независимой переменной

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = Dx. Поэтому формулу для дифференциала принято записывать в следующем виде: dy = f"(x)dx. (4)

Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f"(x) = tgf. Из прямоугольного треугольника MKN

KN = MNtgf = D xtg f = f"(x)D x,

то есть dy = KN.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение Dx.

Отметим основные свойства дифференциала, которые аналогичны свойствам производной.

2. d(c u(x)) = c d u(x);

3. d(u(x) ± v(x)) = d u(x) ± d v(x);

4. d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x);

5. d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x).

Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = f (x), то есть рассмотрим сложную функцию y = f(f(x)). Если каждая из функций f и f являются дифференцируемыми, то производная сложной функции согласно теореме (3) равна y" = f"(u)· u". Тогда дифференциал функции

dy = f"(x)dx = f"(u)u"dx = f"(u)du,

так как u"dx = du. То есть dy = f"(u)du. (5)

Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.

Замечание. Отметим, что в формуле (4) dx = Dx, а в формуле (5) du яляется лишь линейной частью приращения функции u.

Интегральное исчисление - раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением и составляет вместе с ним одну из основных частей

Правило дифференцирования сложной функции приведет нас к одному замечательному и важному свойству дифференциала.

Пусть функции таковы, что из них может быть составлена сложная функция: . Если существуют производные то - по правилу V - существует и производная

Заменяя, однако, производную ее выражением (7) и замечая, что есть дифференциал х как функции от t, окончательно получим:

т. е. вернемся к прежней форме дифференциала!

Таким образом, мы видим, что форма дифференциала может быть сохранена даже в том случае, если прежняя независимая переменная заменена новой. Мы всегда имеем право писать дифференциал у в форме (5), будет ли х независимой переменной или нет; разница лишь в том, что, если за независимую переменную выбрано t, то означает не произвольное приращение а дифференциал х как функции от Это свойство и называют инвариантностью формы дифференциала.

Так как из формулы (5) непосредственно получается формула (6), выражающая производную через дифференциалы то и последняя формула сохраняет силу, по какой бы независимой переменной (конечно, одной и той же в обоих случаях) ни были вычислены названные дифференциалы.

Пусть, например, так что

Положим теперь Тогда и мы будем иметь: Легко проверить, что формула

дает лишь другое выражение для вычисленной выше производной.

Этим обстоятельством особенно удобно пользоваться в случаях, когда зависимость у от х не задана непосредственно, а вместо этого задана зависимость обеих переменных х и у от некоторой третьей, вспомогательной, переменной (называемой параметром):

Предполагая, что обе эти функции имеют производные и что для первой из них существует обратная функция имеющая производную , легко видеть, что тогда и у оказывается функцией от х:

для которой также существует производная. Вычисление этой производной может быть выполнено по указанному выше правилу:

не восстанавливая непосредственной зависимости у от х.

Например, если производную можно определить, как это сделано выше, не пользуясь вовсе зависимостью .

Если рассматривать х и у как прямоугольные координаты точки на плоскости, то уравнения (8) каждому значению параметра t ставят в соответствие некоторую точку, которая с изменением t описывает кривую на плоскости. Уравнения (8) называются параметрическими уравнениями этой кривой.

В случае параметрического задания кривой, формула (10) позволяет непосредственно по уравнениям (8) установить угловой коэффициент касательной, не переходя к заданию кривой уравнением (9); именно,

Замечание. Возмохсность выражать производную через дифференциалы, взятые по любой переменной, в частности, приводит к тому, что формулы

выражающие в лейбницевых обозначениях правила дифференцирования обратной функции и сложной функции, становятся простыми алгебраическими тождествами (поскольку все дифференциалы здесь могут быть взяты по одной и той же переменной). Не следует думать, впрочем, что этим дан новый вывод названных формул: прежде всего, здесь не доказывалось существование производных слева, главное же - мы существенно пользовались инвариантностью формы дифференциала, которая сама есть следствие правила V.


Если дифференцируемая функция независимых переменных а ее полный дифференциал dz равен Пусть теперь Предположим, что в точке ({,?/) функции »?) и г)) имеют непрерывные частные производные по (и по rf, а в соответствующей точке (ж, у) существуют и непрерывны частные производные и вследствие чего функция г = f(x, у) дифференцируема в этой точке. При этих условиях функция имеет в точке 17) производные Дифференциал сложной функции Инвариантность формы дифференциала Неявные функции Касательная плоскость и нормаль к поверхности Касательная плоскость поверхности Геометрический смысл полного дифференциала Нормаль к поверхности Как видно из формул (2), щ и щ непрерывны в точке ({,*?). Поэтому функция в точке дифференцируема, примем согласно формуле полного дифференциала для функции от независимых переменных £ и т], имеем Заменив в правой части равенства (3) щ и щ их выражениями из формул (2), получим или как по условию функции в точке ({,17) имеют непрерывные частные производные, то они в этой точке дифференцируемы и Из соотношений (4) и (5) получаем, что Сравнение формул (1) и (6) показывает, что полный дифференциал функции z = /(я, у) выражается формулой одного и того же вида как в случае, когда аргументы х и у функции /(г, у) являются независимыми переменными, так и в случае, когда эти аргументы являются в свою очередь функциями от некоторых переменных. Таким образом, полный дифференциал функции нескольких переменных обладает свойством инвариантности формы. Замечание. Из инвариантности формы полного дифференциала следует: еслнх и у являются дифференцируемыми функциями какого угодно конечного числа переменных то остаются в силе формулы Пусть имеем уравнение где есть функция двух переменных, заданная в некоторой области G на плоскости хОу. Если для каждого значения х из некоторого интервала (хо - Ло, хо + ^о) существует ровно одно значение у, которое совместно с х удовлетворяет уравнению (1), то этим определяется функция у = у(х), для которой равенство выпсишяется тождественно по х в указанном интервале. В этом случае говорят, что уравнение (1) определяет величину у как неявную функцию х. Иными словами, функция, заданная уравнением, не разрешенным относительно у, называется неявной функцией", она становится явной, если зависимость у от х задается непосредственно. Примеры. 1. Уравнение определяет на всей OcW рх величину у как однозначную функцию х: 2. Уравнением величина у определяется как однозначная функция х. Проиллюстрируем это утверждение. Уравнение удовлетворяется парой значений х = 0, у = 0. Будем считать * параметром и рассмотрим функции. Вопросо том, существует ли для выбранного хо соответств ующее единственное значение Уо таков, что пара (удовлетворяет уравнению (2), сводится к тому, пересеяв стоя ли кривые х а у и единственной точке. Построим их графики на плоскости хОу (рис.11). Кривая » = х + с sin у, где х рассматривается как параметр, получается параллельным переносом вдоль оси Ох иривой г = г sin у. Геометрически очевидно, что при всяком х кривые х = у и г = t+c $1пу имеют единствен»ую точку пересечения, ор-динвтв у которой является функцией от х, определяемой уравнением (2) неявно. Через элементарные функции эта зависимость не выражаетоя. 3. Уравнение ни при каких действительных х не определяет у квк действительную функцию аргументе х. В таком же смысле можно говорить о неявных функциях нескольких переменных. Следующая теорема дает достаточные условия однозначной разрешимости уравнения = 0 (1) относительно у в некоторой окрестности задан ной точки (®о> Уо). Теореме 8 (существомкм неявной функции). Пусть выполнены следующие условия: 1) функция определено и непрерывна в некотором прямоугольнике с центром в точке в точке функция у) обращается в н\ль, 3) в прямоугольнике D существуют и непрерывны частные производные 4) У) Гогда любого достаточно ма/юео положительного числа е найдется окрестность этой окрестности существует единственная^ непрерывная функция y = f(x) (рис. 12), которая принимает значение), удовлетворяет умовию \y - yol и обращает уравнение (1) в тождество: Эта функция непрерывно дифференцируема в окрестности точки Xq, причем Выведем формулу (3) для производной неявной функции, считая существование этой производной доказанным. Пусть у = f(x) - неявная дифференцируемая функция, определяемая уравнением (1). Тогда в интервале) имеет место тождество Дифференциал сложной функции Инвариантность формы дифференциала Неявные функции Касательная плоскость и нормаль к поверхности Касательная плоскость поверхности Геометрический смысл полного дифференциала Нормаль к поверхности вследствие него в этом интервале Согласно правилу дифференцирования сложной функции имеем Единственная в том смысле, чтолюбаяточка (х, у), лежащая на кривой принадлежащая окрестности точки (хо, уо)» имеет координаты, связанные уравнением Отсюда при у = f(x) получаем, что и, значит, Пример. Найти j* от функции у = у(х), определяемой уравнением В данном случае Отсюда в силу формулы (3) Замечание. ТеорсмаЗдастусловиядлясуществования единственной неявной функции, графиккоторой проходит через заданную точку (хо, уо). достаточные, но не необходимые. В само^деле, рассмотрим уравнение Здесь имеет непрерывные частные производные равна нулю в точке 0(0,0). Тем не менее, данное уравнение имеетединственное решение равное нулю при Задача. Пусть дано уравнение - однозначная функция, удовлетворяющая уравнению (Г). 1) Сколько однозначных функций (2") удовлетворяет уравнению (!")? 2) Сколько однозначных непрерывных функций удовлетворяет уравнению (!")? 3) Сколько однозначйых дифференцируемых фуисций удовлетворяет уравнению {!")? 4) Сколько однозначных непрерывных функций, удовлетворяет" уравнению (1"), если и достаточно мало? Теорема существования, аналогичная теореме 8, имеет место и в случае неявной функции z - z(x, у) двух переменных, определяемой уравнением Теорема 9. Пусть выполнены следующие условияГ) функция & определена и непрерывна в области D в области D существуют и непрерывны частные производные Тогда для любого достаточно малого е > О найдется окрестность Г2 точки (®о»Уо)/ в которой существует единственная непрерывная функция z - /(ж, у), принимающая значение при х = ж0, у = уо, удовлетворяющая условию и обращающая уравнение (4) в тождество: При этом функция в области Q имеет непрерывные частные производные иГГ Найдем выражения для этих производных. Пусть уравнение определяет z как однозначную и дифференцируемую функцию z = /(ж, у) независимых переменных хну. Если в это уравнение вместо z подставить функцию f(x, у), то получим тождество Следовательно, полные частные производные по ж и по у функции у, z), где z = /(г, у), также долкны быть равны нулю. Дифференцируя, найдем откуда Эти формулы дают выражения для частных производных неявной функциидвух независимых переменных. Пример. Найти частные проиааодныа от функции х(г,у), заданной уравнением 4 Имеем откуда §11. Касательная плоскость и нормаль к поверхности 11.1. Предварительные сведения Пусть имеем поверхность S, заданную уравнением Определен*. Точка М(х, у, z) поверхности (1) называется обыкновенной точкой этой поверхност и, если в точке М все три производные существуют и непрерывны, причем хотя бы одна из них отлична от нуля. Если в точке Му, z) поверхности (1) все три производные равны нулю или хотя бы одна из этих производных не существует, то точка М называется особой точкой поверхности. Пример. Рассмотрим круговой конус (рис. 13). Здесь так что Единственной особой тонкой мляется начало координат 0(0,0,0): в этой точка аса частные производные одновременно обращаются в нуль. Рис. 13 Рассмотрим пространственную кривую L, заданную параметрическими уравнение ями, Пусть функции имеют непрерывные производные в интервале. Исключим из рассмотрения особые точки кривой, в которых Пусть - обыкновенная точка кривой L, определяемая значением to параметра. Тогда - вектор касательной к кривой в точке. Касательная плоскость поверхности Пусть поверхность 5 задана уравнением Возьмем на поверхности S обыкновенную точку Р и проведем через нее некоторую кривую L, лежащую на поверхности и задаваемую параметрическими уравнениями Предположим, что функции £(*), »/(0» С(0 имеют непрерывные производные, нигде на (а}р) не обращающиеся одновременно в нуль. По определению, касательная кривой L в точке Р называется касатыьной к поверхности 5 в этой точке. Если выражения (2) подставить в уравнение (1), то, поскольку кривая L лежит на поверхности S, уравнение (1) обратится в тождество относительно t: Дифференцируя это тождество по t, по правилу дифференцирования сложной функции получим Выражение в левой части (3) является скалярным произведением двух векторов: В точке P вектор г направлен по касательной к кривой L в этой точке (рис. 14). Что касается вектора п, то он зависит только от координат этой точки и вида функции ^"(ж, у, z) и не зависит от вида кривой, проходящей через точку Р. Так как Р - обыкновенная точка поверхности 5, то длина вектора п отлична от нуля, То, что скалярное произведение означает, что вектор г, касательный к кривой L в точке Р, перпендикулярен вектору п в этой точке (рис. 14). Эти рассуждения сохраняют свою силу для любой кривой, проходящей через точку Р и лежащей на поверхности S. Следовательно, любая касательная прямая к поверхности 5 в точке Р перпендикулярна вектору п, и, значит, все эти прямые лежат в одной плоскости, тоже перпендикулярной вектору п. Определение. Плоскость, в которой расположены все касательные прямые к поверхности 5, проходящие через данную обыкновенную точку Р G 5, называется касательной плоскостью поверхности в точке Р (рис. 15). Вектор Дифференциал сложной функции Инвариантность формы дифференциала Неявные функции Касательная плоскость и нормаль к поверхности Касательная плоскость поверхности Геометрический смысл полного дифференциала Нормаль к поверхности есть нормальный вектор касательной плоскости к поверхности в точке Р. Отсюда сразу получаем уравнение касательной плоскости к поверхности ЗГ(в обыкновенной точке Р0(®о, Уо» этой поверхности: Если поверхность 5 задана уравнением то, записав это уравнение в виде получим и уравнение касательной плоскости в точке, будет выгл -деть так 11.3. Геометрический смысл полного дифференциала Если в формуле (7) положить, то она примет вид Права часть (8) представляет собой полный дифференциал функции z в точке М0(х0) уо) на плоскости хОу> так что Таким образом, полный дифференциал функции z = /(х, у) двух независимых переменных х и у в точке М0, отвечающий приращениям Дх и Ду переменных и у, равен приращению z - z0 аппликаты z точки касательной плоскости поверхности 5 в точке Я>(хо» Уо» /(, Уо)) ПРИ переходе от точки М0(хо, Уо) к точке - 11.4. Нормаль к поверхности Определение. Прямая, проходящая через точку Ро(хо, уо, го) поверхности перпендикулярно касательной плоскости к поверхности в точке Ро, называется нормалью к поверхности в точке Pq. Вектор)L является направляющим вектором нормали, а ее уравнения имеют вид Если поверхность 5 задана уравнением, то уравнения нормали в точке) выглядят так: в точке Здесь В точке (0,0) зти производные равны нулю: и уравнение касательной плоскости в точке 0(0,0,0) принимает следующий вид: (плоскость хОу). Уравнения нормали