Космическая энергетика. Космическая энергетика космическая энергетика вид альтернативной энергетики подразумевающий использование энергии солнца для выработки электроэнергии, - презентация. Солнечная энергетика МКС

Двадцать лет спустя

Технические преимущества

Россия обладает еще одним технологическим преимуществом

Ждем ваших комментариев.

Еще в начале 90-х годов в России разрабатывалась концепция освоения солнечного космического пространства. Она предусматривала, что в 2020-2030 гг. на околоземной орбите будет построено 10-30 солнечных станций, с суммарной мощностью на приеме до 2,5 ГВт. К 2050-2100 гг. количество станций планировалось довести до 800, с суммарной мощностью, как у тысячи ДнепроГЭСов (960 ГВт). Но глобальный экономический кризис разрушил все эти планы.

Двадцать лет спустя

За двадцать лет состояние в солнечной энергетике кардинально изменилась. Солнечные батареи значительно подешевели, при этом возросли их эффективность и КПД. На фоне этого вновь появился интерес к космическим солнечным станциям. По словам экспертов, именно сейчас формируется рынок космического электричества. На то есть несколько причин:

экологическая чистота (никаких вредных выбросов),

низкая стоимость электроэнергии (правда, при огромных первоначальных затратах),

независимость от иссякаемых природных ресурсов.

И Россия имеет уникальный шанс стать лидером в этой области.

Технические преимущества

В 1993 году всю Европу удивил огромный (величиной с Луну) «солнечный зайчик», который быстро двигался через весь континент. Это была блестящая реализация уникального проекта «Знамя». В космос доставили капсулу, в которой было упаковано «полотно» солнечного отражателя. На орбите отражатель развернулся во всю свою гигантскую ширину, при этом площадка в 300 м2 была толщиной в 2 мм и весила всего 4 кг.

Больше никому в мире не удалось это повторить. Сегодня только Россия владеет этой технологией и патентом на нее.

Другие «космические» разработчики, японцы и американцы, предпочитают работать «по-земному» — собирать жесткие конструкции в сотни и тысячи квадратных метров.

Россия обладает еще одним технологическим преимуществом

Энергию из космоса можно передавать двумя способами: радиоволнами сверхвысокочастотного излучения (СВЧ) и лазером. Диаметр СВЧ луча у поверхности земли 20 км, а лазера — 40 м. Получается, что использование лазера намного более эффективно.

Сегодня именно наша страна является мировым лидером по производству лазеров, выпуская 70% от общего объема.

Обладание передовой лазерной техникой и уникальной технологией развертывания бескаркасных солнечных батарей, дает России возможность не только стать первыми в освоении солнечной космической энергии и в передаче на землю, но сделать это с наименьшими материальными затратами.

Спасибо, что дочитали до конца.

Ждем ваших комментариев.

Писатели-фантасты подчас изобретают проекты, которые на много лет опережают развитие техники. Жюль Верн уже в своей первой повести описал воздушный шар, подъем которого можно менять с помощью нагрева газа - сейчас такие аэростаты летают по всему миру. Любимый в России британский фантаст Артур Кларк в 1945 году предложил запускать на геостационарные орбиты спутники связи, а девятью годами позже указал на возможность использования космических аппаратов для предсказания погоды. Обе идеи давно воплощены на практике с великой пользой для человечества.

Классик американской научной фантастики Айзек Азимов тоже побаловал читателей множеством блестящих технических прогнозов. Один из них содержится в коротком рассказе Reason, который в 1941 году появился в апрельском выпуске журнала Astounding Science Fiction (на русском языке он впервые был опубликован в культовом сборнике «Я, робот» под заголовком «Логика»).

Действие происходит на одной из космических станций, снабжающих энергией нашу планету. Ее шарообразный корпус окружен панелями с фотоэлементами, которые преобразуют солнечные лучи в электрический ток, питающий исполинский генератор микроволнового излучения. Оно тонким лучом посылается на приемную станцию на Земле и там вновь переводится в электричество. Просто, элегантно и, главное, - абсолютно осуществимо с точки зрения физики. Правда, поклонники Азимова вспомнят, что ответственный за работу излучателя робот Кьюти устроил мятеж, но в конечном счете рассказ завершается хэппи-эндом.

Весьма возможно, что всего через семь лет азимовская идея станет реальностью - правда, пока без роботов. Ее намерена осуществить калифорнийская фирма Solaren Corporation, созданная группой инженеров аэрокосмической промышленности. Эта компания уже убедила крупнейшую энергетическую корпорацию штата Pacific Gas & Electric доставлять производимое ею электричество жителям округа Фресно. PG&E пока обещала закупать 200 тыс. киловатт космической электроэнергии, и это только начало. Руководители Solaren полагают, что со временем ее спутники смогут генерировать от миллиона 200 тысяч до 4, 800 млн киловатт - это вполне соответствует возможностям одной-трех современных атомных электростанций. Что и говорить, не слабо.

Как же будет выполняться это чудо-проект? Solaren ведет речь о нескольких спутниках, запущенных на пролегающие на экватором круговые геостационарные орбиты высотой около 36 тыс. км. Спутники развернут зеркала многокилометровых размеров, изготовленные из тонкой блестящей пленки. Эти рефлекторы будут собирать солнечные лучи и направлять их на батареи фотоэлементов - в точности, как в рассказе Азимова. Затем солнечная энергия будет преобразована в и направлена на антенны наземной приемной станцию - опять-таки в полном соответствии с сюжетом фантаста.

Разница лишь в том, что Solaren будет передавать на Землю энергию не с помощью опасных для человека волн микроволнового диапазона, а посредством вполне безвредных радиоволн. Для этого потребуется построить серию приемных антенн и расположить их на участке площадью несколько кв. километров. Но зато лучи космической энергостанции даже при расфокусировке уж точно никого и ничего не сожгут (что едва не случилось в азимовском рассказе).

Фирма утверждает, что ее спутники смогут снабжать солнечной электроэнергией 250 тыс. жилых домов в округе Фресно. При этом объявленная цена проекта не так уж и велика: 2 млрд. долларов. Solaren уверена, что себестоимость космической энергии не превысит цену электричества от ветрогенераторов и наземных солнечных станций.

Похожий проект сейчас разрабатывает и другая американская фирма Space Energy. Подумывают об этом и в Стране Восходящего Солнца. Японское Управление по исследованию космического пространства недавно приступило к испытаниям прототипа излучателя, который сможет передавать на Землю солнечную энергию в виде микроволн - точь в точь, как у Азимова. Если тестирование пройдет успешно, агентство приступит к планированию искусственных спутников, которые смогут поставлять чистое электричество полумиллиону домов. Правда, японцы не рассчитывают запустить первый такой сателлит ранее 2030 года.

Конечно, пока такие проекты могут показаться именно тем, чем они казались в середине прошлого века, - чистой фантастикой. Мировой рекорд по беспроводной передаче приличных объемов энергии держится аж с 1975 года. Специалисты НАСА тогда ухитрились передать на одну милю микроволновой луч мощностью в 30 киловатт, и с тех пор этот показатель еще никем не перекрыт. Solaren обещает перекачивать неизмеримо большие мощности на дистанции в десятки тысяч километров. Однако ее руководство утверждает, что необходимые для этого технологии уже существуют.

Если это не маниловщина, то в 2016 году или около того «Голос Америки» сможет сообщить о начале работы первой в мире космической солнечной энергостанции. В конце концов, ждать осталось недолго.


История идеи: Изначально идея появилась в 1970-х годах. Появление такого проекта было связано с энергетическим кризисом. В связи с этим правительство США выделило 20 миллионов долларов космическому агентству NASA и компании Boeing для расчёта целесообразности проекта гигантского спутника SPS (Solar Power Satellite). После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС, мощность которой составляет 6000 мегаватт. Но примерная стоимость такого проекта 1 триллион долларов, что и послужило причиной закрытия программы.


Строение устройства: Космический спутник по сбору солнечной энергии по существу состоит из трех частей: средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга. средства передачи энергии на землю, например, через СВЧ или лазер. средства получения энергии на земле, например, через антенны. Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури.


Преимущества и недостатки солнечной энергии на Земле против Космической: Космическая солнечная энергия - энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35% энергии от той которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом фотоэлектрические панели на геостационарной орбите Земли (на высоте км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы. С другой стороны, главный недостаток Космической энергетики и по сей день является ее высокая стоимость. Другим недостатком является тот факт, что при передаче энергии на поверхность Земли будет потеря по крайней мере 40-50%.


Основные технологические проблемы: По данным американских исследований 2008 года, есть четыре основных технологических проблем, которые наука должна преодолеть, чтобы быть космическая энергия стала легкодоступной: Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре. Беспроводная передача энергии должна быть точной и безопасной. Космические электростанции должны быть не дорогими в производстве. Низкая стоимость космических ракет-носителей. Поддержание постоянного положения станции над приёмником энергии: ведь энергия столкновения с частицами Солнца будет отталкивать станцию от нужного положения, а энергия, передаваемая на Землю, будет толкать станцию от Земли

В последующие годы многие страны заинтересовались космической солнечной энергетикой, включая Японию, Китай и несколько европейских стран.

«Многие люди заинтересовались этим, но тогда было куда меньше технических возможностей и аппаратных средств», - говорит Яффе.

В 2009 году секретарь военно-морского флота США Рэй Мабус поставил ряд задач по снижению зависимости ВМС от иностранной нефти и увеличению использования альтернативных источников энергии. В том же году Яффе получил финансирование от научно-исследовательской лаборатории ВМС США, чтобы улучшить технологию, которая преобразовывала бы солнечную энергию, собранную в космосе, в другую форму энергии, которую можно было бы передать на Землю.

Как работает технология?

Хотя технология нуждается в усовершенствовании, основная идея довольно проста. Солнце посылает фотоны, энергетические пакеты света, во всех направлениях. Обычная солнечная панель преобразует эти фотоны в электроны постоянного электрического тока. Потом постоянный ток преобразуется в переменный и передается через электрическую сеть.

В космосе большой проблемой является то, как завести эту энергию в сеть.

С солнечными батареями в космосе ученым нужно найти самый эффективный способ передачи постоянного тока от солнечных отражателей на Землю. Ответ: электромагнитные волны вроде тех, что используются для передачи радиочастот или разогрева еды в микроволновой печи.

«Люди могут не связывать радиоволны с передачей энергии, потому что думают о них в связи с коммуникациями, радио, телевизорами или телефонами. Они не думают о них как о переносчиках энергии», - говорит Яффе. Но мы знаем, что микроволны (одна из разновидностей электромагнитных волн) переносят энергию - их энергия нагревает нашу еду.

Яффе называет технологию, над которой работает, модулем «сэндвич». На рисунке ниже показаны похожие на зеркала солнечные отражатели, концентрирующие фотоны солнца на массиве модулей типа сэндвич. Верхняя часть сэндвича получает солнечную энергию. Антенны на нижней боковой балке посылают радиоволны на Землю.


Изображение выше выполнено без соблюдения масштабов. Модули-сэндвичи должны быть три метра длиной, но их понадобится порядка 80 000. Массив таких модулей будет длиной в девять футбольных полей, примерно с километр. Это в девять раз больше, чем .

Вернувшись на Землю, содержащие энергию радиочастоты от космических солнечных панелей будут приниматься специальной антенной - ректенной - которая может быть три километра в диаметре.

«Она будет похожа на поле, усеянное проводами. Эти элементы ректенны будут принимать входящие радиоволны и преобразовывать их в электричество», - говорит Яффе.

Мощный пучок радиоволн можно отправить в любое место на Земле, так как направление пучка можно изменить с помощью метода под названием «ретродирективное управление лучом». Достаточно отправить «пилотный сигнал» из центра принимающей станции. Спутник видит сигнал и перенастраивает передатчик для передачи радиоволн на земную станцию.

Огромным преимуществом такой системы как для военных, так и гражданских лиц будет возможность передачи энергии на удаленные базы и места, куда будет логистически сложно и невероятно дорого доставлять дизельное топливо.

Гигантский луч энергии из космоса


Гигантский пучок радиоволн, идущих вниз от космоса на Землю, может напугать большинство людей, которые видели, как инопланетный корабль использует такие лучи, чтобы взрывать города. Но на самом деле вы даже не увидите радиолуч невооруженным глазом - радиосигналы текут вокруг нас повсюду и во всех направлениях.

Хотя эти радиосигналы содержат больше энергии, чем сигнал телевизора или радио, плотность сигнала все равно будет довольно низкой и не будет угрожать людям, самолетам или птицам, пролетающим через него. Конечно, технология еще не была проверена вне лаборатории, поэтому реальных доказательств ее безопасности пока нет.

Основной проблемой такой системы остается ее стоимость. И эта проблема касается всех участвующих сторон, будь то правительство, частные или коммерческие финансовые фонды.

Трудно сказать, сколько будет стоить полномасштабная реализация космической системы солнечной станции, но явно не меньше сотен миллионов долларов. Есть определенный предел того, насколько большой объект мы можем запустить в космос, да и ракеты тоже стоят недешево. Международную космическую станцию, например, строили в космосе по частям, поскольку не было достаточно большой или мощной ракеты, чтобы запустить полную систему в космос.

Задача Яффе - произвести прототип одной секции модуля «сэндвич», но не закончить проект. Он также тестирует модули в условиях, подобных космическим, чтобы гарантировать, что они смогут противостоять и продолжать работать в невероятной теплоте солнца в космосе.

Яффе пытается найти спонсоров, чтобы обеспечить финансирование продолжению своего проекта. Но подчеркивает, что долгосрочные энергетические проекты довольно сложно продавать, особенно когда он не может показать людям технологию в действии. Яффе считает, что реальным мотиватором будет международная конкуренция, как в 1950-х годах, когда Россия разработала первый спутник и обогнала США в космической гонке. Теперь же, похоже, Япония планирует выйти в этом проекте первой.

Даже без финансирования на государственном уровне небольшие предприятия вроде Solaren полагают, что космические солнечные станции станут реальностью в ближайшем будущем. Гари Спирнка, генеральный директор Solaren, строил долгую карьеру как в правительственном, так и частном секторе космической инженерии. Он годами наблюдал за тем, как правительство планирует и замораживает проекты таких станций, поэтому больше заинтересован в частном секторе.

  • Фантастические электростанции

Не секрет, что в русле постоянной борьбы за более продуктивную, экологическую и дешевую энергию, человечество, все чаще, прибегает к помощи альтернативных источников получения драгоценной энергии. Во многих странах, достаточно обширное количество жителей определили для себя необходимостью использование солнечных модулей для снабжения жилища электроэнергией.

Часть из них пришли к такому выводу благодаря трудным расчетам по экономии материальных средств, а некоторых сделать такой ответственный шаг вынудили обстоятельства, одно из которых труднодоступное географическое положение, обуславливающее отсутствие надежных коммуникаций. Но не только в таких труднодоступных местах нужны солнечные батареи. Существуют рубежи намного отдаленнее, нежели край земли - это космос. Солнечная батарея в космосе является единственным источником выработки необходимого количества электроэнергии.

Основы космической солнечной энергетики

Идея применять солнечные батареи в космосе впервые появилась больше полувека назад, во время первых запусков искусственных спутников земли. В тот период, в СССР, профессор и специалист в области физики, особенно в сфере электричества - Николай Степанович Лидоренко, обосновал необходимость применения бесконечных источников энергии на космических аппаратах. Такой энергией могла быть только энергия солнца, которая добывалась с помощью солнечных модулей.

В настоящее время все космические станции функционируют исключительно за счет солнечной энергии.

Большим помощником в этом деле является сам космос, так как солнечные лучи, так необходимые для процесса фотосинтеза в солнечных модулях, в избытке имеются в космическом пространстве, и нет никаких помех для их потребления.

Минусом использования солнечных батарей на околоземной орбите, может служить влияние радиации на материал изготовления фотопласти н. Благодаря такому негативному влияния происходит изменение структуры солнечных элементов, что влечет снижение выработки электроэнергии.

Фантастические электростанции

В научных лабораториях всей земли, в настоящее время, происходит схожая задача - поиск бесплатной электроэнергии от солнца. Только не в масштабах отдельного дома или города, а в размерах всей планеты. Суть этой работы состоит в том, чтобы создать огромные по своим размерам, а соответственно и выработкам энергии, солнечные модули.

Площадь таких модулей огромна и размещение их на поверхности земли повлечет много трудностей, таких как:

  • значительные и свободные площади для установки приемников света,
  • влияние метеоусловий на и КПД модулей,
  • затраты на обслуживание и чистку солнечных панелей.

Все эти отрицательные аспекты исключают установку подобного монументального сооружения на земле. Но выход есть. Заключается он в установке гигантских солнечных модулей на околоземной орбите. При воплощении в жизнь такой идеи, человечество получает солнечный источник энергии, который всегда находится под воздействием солнечных лучей, никогда не потребует чистки от снега, и самое главное не будет занимать полезное пространство на земле.

Конечно же, тот, кто первым установит солнечные батареи для космоса, станет в будущем диктовать свои условия в мировой энергетике. Не секрет, что, запасы полезных ископаемых на нашей земле не просто не бесконечен, а наоборот с каждым днем напоминает о том, что скоро человечеству придется переходить на альтернативные источники в принудительном порядке. Именно поэтому, разработки космических солнечных модулей на земной орбите стоит в списке первоочередных задач энергетиков и специалистов, проектирующих электростанции будущего.

Проблемы размещения солнечных модулей на орбите земли

Трудности рождения таких электростанций, не только в установке, доставке и базировании солнечных модулей на околоземной орбите. Наибольшие проблемы вызывает передача, выработанной солнечными модулями, электрического тока потребителю, то есть на землю. Провода, конечно же, не протянешь, да и перевозить в контейнере не получится. Существуют почти нереальные технологии передачи энергии на расстояния без осязаемых материалов. Но такие технологии вызывают много противоречивых гипотез в научном мире.

Во первых , столь сильное излучение будет негативно влиять на обширную область приема сигнала, то есть будет происходить облучение значительного куска нашей планеты. А если таких космических станций со временем станет очень много? Это может привести к облучению всей поверхности планеты, результатом чего будут непредсказуемые последствия.

Во вторых негативным моментом может быть, частичное разрушение верхних слоев атмосферы и озонового слоя, в местах передачи энергии от электростанции к приемнику. Последствия такого рода, может предположить даже ребенок.

В довесок ко всему, существуют множество нюансов различного характера, увеличивающих отрицательные моменты, и отдаляющих момент запуска подобных устройств. Таких внештатных ситуаций может быть множество, от трудности ремонта панелей, в случае непредвиденной поломки или столкновения с космическим телом, до банальной проблемы - как утилизировать столь необычное сооружение, после окончания срока его эксплуатации.

Несмотря на все негативные моменты, деваться человечеству, как говориться, некуда. Солнечная энергия, на сегодняшний день, единственный источник энергии, который может в теории покрыть растущие потребности людей в электричестве. Ни один из существующих ныне источников энергии на земле, не может сравниться своими будущими перспективами с этим уникальным явлением.

Приблизительные сроки внедрения

Солнечная космическая электростанция давно перестала быть теоретическим вопросом. На 2040 год уже намечен первый пуск электростанции на земную орбиту. Конечно, это только пробная модель, и она далека от тех глобальных сооружений, которые планируются построить в дальнейшем. Суть такого запуска - посмотреть на практике - как будет работать такая электростанция в рабочих условиях. Страна, которая взяла на себя столь нелегкую миссию - Япония. Предполагаемая площадь батарей, теоретически, должна составить около четырех квадратных километров.

Если эксперименты покажут, что такое явление как солнечная электростанция может существовать, то основное направление солнечной энергетики получит четкий путь по освоению подобных изобретений. Если экономический аспект, не сможет остановить все дело на начальном этапе. Дело в том, что по теоретическим подсчетам, для того, чтобы вывести на орбиту полноценную солнечную электростанцию, необходимо более двухсот запусков грузовых ракетоносителей. К сведению, стоимость одного запуска тяжелого грузовика, исходя из существующей статистики, составляет примерно 0,5 - 1 миллиард долларов. Арифметика проста, и результаты ее не утешительны.

Получающаяся сумма огромна, и она пойдет только на доставку разобранных элементов на орбиту, а необходимо еще собрать весь конструктор.

Подводя итог всему сказанному, можно отметить, что создание космической солнечной электростанции дело времени, но построить такую конструкцию под силу исключительно сверхдержавам, которые смогут осилить весь груз экономического бремени от реализации процесса.