Три функции днк в клетке. Что такое ДНК и РНК: каковы функции нуклеиновых кислот в клетке. Мономеры нуклеиновых кислот

1. Выберите примеры функций белков, осуществляемых ими на клеточном уровне жизни.

1) обеспечивают транспорт ионов через мембрану

2) входят в состав волос, перьев

3) формируют кожные покровы

4) антитела связывают антигены

5) запасают кислород в мышцах

6) обеспечивают работу веретена деления

2. Выберите признаки РНК.

1) содержится в рибосомах и ядрышке

2) способна к репликации

3) состоит из одной цепи

4) содержится в хромосомах

5) набор нуклеотидов АТГЦ

6) набор нуклеотидов АГЦУ

3. Какие функции выполняют липиды в организме животных?

1) ферментативную

2) запасающую

3) энергетическую

4) структурную

5) сократительную

6) рецепторную

4. Какие функ­ции выполняют уг­ле­во­ды в ор­га­низ­ме животных?

1) каталитическую

2) структурную

3) запасающую

4) гормональную

5) сократительную

6) энергетическую

5. Белки, в отличие от нуклеиновых кислот,

1) участвуют в образовании плазматической мембраны

2) входят в состав хромосом

3) участвуют в гуморальной регуляции

4) осуществляют транспортную функцию

5) выполняют защитную функцию

6) переносят наследственную информацию из ядра к рибосоме

6. Какие из пе­ре­чис­лен­ных бел­ков не­воз­м­ож­но об­на­ру­жить внут­ри мы­шеч­ной клетки?

2) гемоглобин

3) фибриноген

5) РНК-полимераза

6) трипсин

7. Выберите осо­бен­но­сти стро­е­ния мо­ле­кул белков.

1) со­сто­ят из жир­ных кислот

2) со­сто­ят из аминокислот

3) мо­но­ме­ры мо­ле­ку­лы удер­жи­ва­ют­ся пеп­тид­ны­ми связями

4) со­сто­ят из оди­на­ко­вых по стро­е­нию мономеров

5) пред­став­ля­ют собой мно­го­атом­ные спирты

6) чет­вер­тич­ная струк­ту­ра мо­ле­кул со­сто­ит из не­сколь­ких глобул

8. Выберите три функции, ха­рак­тер­ные толь­ко для белков.

1) энергетическая

2) каталитическая

3) двигательная

4) транспортная

5) структурная

6) запасающая

9. Какие функ­ции вы­пол­ня­ют в клет­ке мо­ле­ку­лы уг­ле­во­дов и липидов?

1) информационную

2) каталитическую

3) строительную

4) энергетическую

5) запасающую

6) двигательную

10. Все при­ведённые ниже химические элементы, кроме двух, являются органогенами. Опре­де­ли­те два при­зна­ка, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.

1) водород

5) кислород

11. Все при­ведённые ниже хи­ми­че­ские эле­мен­ты, кроме двух, яв­ля­ют­ся макроэлементами. Опре­де­ли­те два при­зна­ка, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.


12. Выберите ТРИ функ­ции ДНК в клетке

1) по­сред­ник в пе­ре­да­че наследственной информации

2) хра­не­ние наследственной информации

3) ко­ди­ро­ва­ние аминокислот

4) мат­ри­ца для син­те­за иРНК

5) регуляторная

6) струк­ту­ри­ро­ва­ние хромосом

13. Молекула ДНК

1) полимер, мономером которого является нуклеотид

2) полимер, мономером которого является аминокислота

3) двуцепочный полимер

4) одноцепочный полимер

5) содержит наследственную информацию

6) выполняет энергетическую функцию в клетке

14. Какие признаки характерны для молекулы ДНК?

1) состоит из одной полипептидной нити

2) состоит из двух полинуклеотидных нитей, закрученных в спираль

3) имеет нуклеотид, содержащий урацил

4) имеет нуклеотид, содержащий тимин

5) сохраняет наследственную информацию

6) переносит информацию о строении белка из ядра к рибосоме

15. Моносахариды в клет­ке выполняют функции:

1) энергетическую

2) со­став­ных компонентов полимеров

3) информационную

4) со­став­ных компонентов нук­ле­и­но­вых кислот

5) за­щит­ную

6) транспортную

16. Чем молекула иРНК отличается от ДНК?

1) переносит наследственную информацию из ядра к рибосоме

2) в состав нуклеотидов входят остатки азотистых оснований, углевода и фосфорной кислоты

3) состоит из одной полинуклеотидной нити

4) состоит из связанных между собой двух полинуклеотидных нитей

5) в ее состав входит углевод рибоза и азотистое основание урацил

6) в ее состав входит углевод дезоксирибоза и азотистое основание тимин

17. Все при­ве­ден­ные ниже при­зна­ки, кроме двух, являются функциями липидов. Опре­де­ли­те два при­зна­ка, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в таб­ли­цу цифры, под ко­то­ры­ми они ука­за­ны.

1) запасающую

2) гормональную

3) ферментативную

4) переносчика наследственной информации

5) энергетическую

18. Все приведённые ниже признаки, кроме двух, можно использовать для описания значения белков в организме человека и животных. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) служат основным строительным материалом

2) расщепляются в кишечнике до глицерина и жирных кислот

3) образуются из аминокислот

4) в печени превращаются в гликоген

5) в качестве ферментов ускоряют химические реакции

19. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы ДНК. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

4) способна самоудваиваться

5) в комплексе с белками образует хромосомы

20. Все приведённые ниже признаки, кроме двух, можно использовать для определения функций липидов в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) запасающая

2) регуляторная

3) транспортная

4) ферментативная

5) строительная

21. Все приведённые ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) осуществляют гомеостаз

2) переносят наследственную информацию из ядра к рибосоме

3) участвуют в биосинтезе белка

4) входят в состав клеточной мембраны

5) транспортируют аминокислоты

22. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы ДНК. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из двух цепей, образующих спираль

2) содержит нуклеотиды АТГЦ

3) в состав входит сахар рибоза

4) самоудваивается

5) участвует в процессе трансляции

23. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы инсулина. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1) состоит из аминокислот

2) гормон надпочечников

3) катализатор многих химических реакций

4) гормон поджелудочной железы

5) вещество белковой природы

24 Все перечисленные ниже признаки, кроме двух, можно использовать для описания яичного белка альбумина. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из аминокислот

2) пищеварительный фермент

3) денатурирует обратимо при варке яйца

4) мономеры связаны пептидными связями

5) молекула образует первичную, вторичную и третичную структуры

25. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из двух полинуклеотидных цепей, закрученных в спираль

2) переносит информацию к месту синтеза белка

3) в комплексе с белками строит тело рибосомы

4) способна самоудваиваться

5) переносит аминокислоты к месту синтеза белка

26. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы крахмала. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) состоит из одной цепи

2) хорошо растворяется в воде

3) в комплексе с белками образует клеточную стенку

4) подвергается гидролизу

5) является запасным веществом в мышечных клетках

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Вспомните!

Почему нуклеиновые кислоты относят к гетерополимерам?

Состоят из разных мономеров – нуклеотидов, но сами нуклеотиды различаются между собой некоторыми структурами.

Что является мономером нуклеиновых кислот?

Нуклеотиды

Какие функции нуклеиновых кислот вам известны?

Хранение и передача наследственной информации. В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов. Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме. В РНК каждый ее тип выполняет свою функцию в зависимости от своего строения. м-РНК – копия участка ДНК, где записаны информация о числе, составе и последовательности аминокислотных остатков, определяющих структуру и функции белковой молекулы. В данной РНК заключен план построения молекулы полипептида. т-РНК – ее роль состоит в присоединении молекулы аминокислоты и транспортировке ее к месту синтеза белка. р-РНК – соединяется с белком и образует особые органоиды – рибосомы, на которых и осуществляется сборка белковых молекул в клетке любого живого организма.

Какие свойства живого определяются непосредственно строением и функциями нуклеиновых кислот?

Наследственность, изменчивость, размножение

Вопросы для повторения и задания

1. Что такое нуклеиновые кислоты? Почему они получили такое название?

Нуклеиновые кислоты – это биополимеры, мономерами которых являются нуклеотиды. От лат. «нуклеос» - ядро, так как эти кислоты располагаются, или синтезируются в ядре, или у прокариот функцию ядерной информации выполняет нуклеоид (ДНК илиРНК).

2. Какие типы нуклеиновых кислот вы знаете?

ДНК, РНК: и-РНК, т-РНК, р-РНК.

4. Назовите функции ДНК. Как взаимосвязаны строение и функции ДНК?

Хранение и передача наследственной информации – располагается ДНК строго в ядре.

Молекула ДНК способна к самовоспроизведению путем удвоения. Под действием ферментов двойная спираль ДНК раскручивается, связи между азотистыми основаниями разрываются.

В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов.

Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме.

5. Какие виды РНК существуют в клетке, где они синтезируются? Перечислите их функции.

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Все виды РНК синтезируются на матрице ДНК.

6. Достаточно ли знать, какой моносахарид входит в состав нуклеотидов, чтобы понять, о какой нуклеиновой кислоте идёт речь?

Да, в состав РНК входит рибоза.

В состав ДНК входи дезоксирибоза.

Виды РНК не возможно будет по одному моносахариду распознать.

7. Фрагмент одной цепи ДНК имеет следующий состав: А-Г-Ц-Г-Ц-Ц-Ц-Т-А-. Используя принцип комплементарности достройте вторую цепь.

А-Г-Ц-Г-Ц-Ц-Ц-Т-А

Т-Ц-Г-Ц-Г- Г-Г-А-Т

Подумайте! Вспомните!

1. Почему в клетках существует три вида молекул РНК, но только один вид ДНК?

ДНК – самая крупная молекула, из ядра выйти не может, поры маловаты. РНК мелкие молекулы, каждая выполняет свою функцию, обеспечивая различные функции в клетке, одновременно работая. На матрице ДНК одновременно может синтезироваться множество видов РНК, и все они идут выполнять свои функции.

3. Какие виды РНК будут одинаковы у всех организмов? Какой вид РНК обладает максимальной изменчивостью? Объясните свою точку зрения.

и-РНК и т-РНК будет у всех организмов одинаковая, так как биосинтез белка идет по единому механизму, а т-РНК переносит одни и те же 20 аминокислот. р-РНК может быть иной.

Строение и свойства ДНК определяют ее основные функ­ции:

1. Хранение генетической информации . ДНК находится в ядре и исключена из активных обменных процессов.

2. Передача генетической информации потомству происхо­дит в процессе митоза и мейоза на основе репликации ДНК.

3. Запись генетической информации . Генетическая информация записана в виде ГЕНЕТИЧЕСКОГО или биохимического кода.

4 . Контроль за обменом веществ в клетке

Рибонуклеиновые кислоты (РНК)

Выделяют несколько видов РНК: рибосомальную, информационную (матричную), транспортную и др.Они имеют различную величину, структуру и функции.

Рибосомальная РНК (рРНК) имеет молекулярную массу 1-2 млн., число нуклеотидов - до 5000. Она составляет около 85% от всей РНК. рРНК не однород­на по своему составу. В клетках эукариот синтез рРНК локализован в ядрышке и осуществляется РНК - полимеразой I . Рибосомальные гены локализованы в хромосомах имеющих вторичную перетяжку. Рибосомальная РНК не транслируется и выполняет следующие функции:

1 .является структурным компонентом рибосомы 2. отвечает за взаимодействие с иРНК и тРНК


Информационная РНК (иРНК или мРНК) составляет около 5% всей клеточной РНК у эукариот. Она образуется на уникальных участ­ках цепи ДНК, несет информацию о структурных и регуляторных белках организма. В зависимости от степени сложности и-РНК бывает различной величины (1-3 тысячи нуклеотидов) и массы.

Бактериальная иРНК отличается по количеству кодируемых белков. Некоторые иРНК соответствуют только одному гену а другие (их большинство) – нескольким генам.

В составе и РНК можно выделить участки двух типов: кодирующие и некодирующие. Кодирующие определяют первичную структуру белка. Некодирующие располагаются на 5’ - конце (лидерные) и на 3’ - конце (концевой или трейлерный)

В 5" -концевой последовательности имеется участок, необходимый для связывания иРНК с рибосомой . Зрелая иРНК у эукариот на5"-конце несет "шапочку" или КЭП (метилированный гуанозин), на 3"-конце располагаетсяполиадениловый «хвост» (образованный 100-200 остатками адениловой кислоты).

Рис.24. Строение иРНК эукариот

Функции КЭП:

1 . защищает иРНК от деградации;

2. отвечает за присоединение иРНК к малой субъединице рибосомы

3. повышает эффективность трансляции иРНК у эукариот

Функции poly(А):

1. защита иРНК от деградации

2. он обеспечивает выход иРНК из ядра в цитоплазму

3. по его длине определяют время нахождения иРНК в цитоплазме (чем короче «хвост» тем больше времени иРНК находится в цитоплазме)

4. обеспечивает возможность многократной трансляции иРНК. После акта трансляции от её её 3" -конца отщепляется один или несколько нуклеотидов.

5. учувствует в процессе созревание иРНК

Таким образом, иРНК служит матрицей для синтеза клеточных белков , т.е. она выполняет роль посредника между ДНК и белком . Она несет информацию о времени, количестве, месте и условиях синтеза этого белка, а так же времени жизни и деградации самой себя (чаще всего эта информация запрограммирована специфическими последовательностями в 3"-нетранслируемой области). Определенные белки клетки узнают эти последовательности, связываются с ними и стабилизируют иРНК. иРНК выходит через поры ядра в цитоплазму. В цитоплазме она может накапливаться в неактивной форме, т.е. в виде информосом , в которых иРНК находится в комплексе с белками(рис.25).

Рис.25. Строение информосомы.

Они были открыты в 1964 г. в лаборатории А.С. Спирина . В настоящее время точно установлено, что «запасные» иРНК в эмбриональных клетках сразу не транслируются, а запасаются для использования на более поздних стадиях эмбриогенеза и играют важную роль при дифференцировке клеток. Информосомы длительное время могут сохраняться в цитоплазме и использоваться клеткой по мере необходимости. Их существование было доказано в яйцеклетках. Так, при облучении лазерным лучом определенных участков цитоплазмы яйцеклетки нарушалось формирование первичных половых клеток, т.к. разрушались информосомы, содержащие информацию о регуляторных белках, ответственных за специализацию первичных половых клеток.


Таким образом, эта форма существования РНК имеет прямое отношение к регуляции трансляции в рибосомальном аппарате клетки.

Транспортная РНК (тРНК) составляет около 10% всей кле­точной РНК(рис.26). Ее молекулярная масса примерно 10 000. Ее структура наиболее изучена по сравнению с другими классами РНК. Синтезируется у эукариот тРНК при помощи РНК-полимеразы III в виде предшественников. Структура молекул тРНК отличается эволюционной консервативностью, что по-видимому связано с высокой степенью их функциональной специализации. Зрелая тРНК имеет 75-85 нуклеотидов. На 5" конце она всегда имеет гуанин , на 3" - триплет ЦЦА. Первичная структура тРНК -одинарная цепь нуклеотидов. Вторичная напоминаетклевер­ный листок с четырьмя спиральными участками - «шпильками», где спарены комплементарные нуклеотиды: А - У, Г - Ц. На концах «шпилек» находятся одноцепочечные пет­ли. Третичная структура тРНК возникает в результате склады­вания боковых «шпилек» и взаимодействия дополнительных оснований. Напоминает по форме латинскую букву L.

В нижней петле расположен антикодон - триплет, который взаимодействует с комплементарным кодоном иРНК (рис.26.). Аминокислота присоединяется к концевому аденозину на 3"-конце (акцепторный конец).

Таким образом, тРНК выполняет две функции: 1. Расшифровку кодона иРНК; 2. Расшифровку и перенос соответствующей аминокислоты.

Рис.26. Вторичная и третичная структура тРНК. (Б. Альбертс и др., 1994, т.1, с. 60)

Низкомолекулярные РНК (нмРНК или мяРНК) разнообразны по функциям, структуре и размерам. нмРНК обнаружены и в ядре и цитоплазме эукариот в составе рибонуклеопротеидных частиц (РНП-частицы), которые играют важную роль в механизме сплайсинга иРНК, в синтезе белков , секретируемых клеткой. Некоторые ферменты (например, изомераза, амилаза, панкреатическая рибонуклеаза) содержат нмРНК в качестве необходимого структурного элемента .

Гетерогенная ядерная РНК (гяРНК) – смесь транскриптов многих ядерных генов; локализована в ядре.

У большинства организмов все РНК являются посредника­ми между ДНК и структурами клетки. Только у некоторых вирусов и бак­териофагов РНК играет роль первичной информационной сис­темы .

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»