Образование скрытого изображения. Естественно-научные основы фотографии. Физико-химическая сущность фотографического процесса

С этой точки зрения скрытое изображение состоит из небольших групп атомов металлического серебра на поверхности или внутри микрокристаллов галогенида, образовавшихся в результате окислительно-восстановительной реакции , вызванной фотоэффектом . В процессе проявления эти группы служат катализатором, приводящим к восстановлению до металлической формы всего кристалла. При больших экспозициях металлическое серебро восстанавливается в масштабах, видимых глазом, образуя видимое изображение без проявления. Такое явление характерно для фотоматериалов с так называемым «дневным» или «видимым проявлением», главным образом фотобумаг .

Однако, наиболее широкое распространение получила технология, требующая химического проявления невидимого латентного изображения. В этом случае проявление выступает в роли усилителя изображения, поэтому фотоматериалы второго типа обладают светочувствительностью , на несколько порядков превосходящей этот же параметр у фотобумаг с видимым проявлением.

Механизм образования

Впервые понятие скрытого изображения появилось после открытия Тальбота , который в сентябре 1840 года завершил разработку калотипии . В результате обработки экспонированной светочувствительной бумаги раствором галлоаргентонитрата (смеси азотнокислого серебра с галловой и уксусной кислотами) на ней появлялось видимое изображение . Это позволило резко повысить светочувствительность хлористого серебра и сократить необходимую выдержку с получаса, требовавшихся без химического проявления, до двух-трёх секунд. Первая гипотеза о природе скрытого изображения была высказана Франсуа Араго , который считал, что причиной явления становится способность к восстановлению до металлической формы тех микрокристаллов галогенида, в которых под воздействием фотолиза образовались микроскопические группы атомов серебра, становящиеся центрами проявления .

Современное представление о механизме образования скрытого изображения основано на квантово-механической теории, предложенной в 1938 году британскими физиками-теоретиками Рональдом Гёрни (англ. Ronald Wilfred Gurney ) и Невилом Моттом (англ. Nevill Francis Mott ) . Она основана на предположении, что реальный микрокристалл галогенида серебра обладает примесями в виде микроскопических включений, и дефектами кристаллической решётки . Под воздействием тепловых колебаний ионы , из которых состоит решётка, регулярно покидают её, причём часть ионов серебра не в состоянии вернуться обратно, перемещаясь в межузельном пространстве. Попавший на эмульсию фотон поглощается ионом галоида , а высвободившийся при этом валентный электрон попадает в «потенциальную яму». Так называется зона пониженной энергии, в которой есть примесь, и где нарушена взаимосвязь ионов . Фотоэлектрон, захваченный ямой, заряжает её отрицательно, и притягивает ближайший межузельный ион серебра. В результате ион рекомбинирует с электроном и превращается в нейтральный атом .

В свою очередь, атом галоида (например, брома), образовавшийся из иона в процессе поглощения фотона, образует так называемую положительную «дырку», которая постепенно перемещается к поверхности микрокристалла путём эстафетной передачи избыточного электрона к соседним ионам галоида. Попав на поверхность микрокристалла, дырка связывается желатиной , которая препятствует окислению центров скрытого изображения . Процесс, сопровождающийся восстановлением атома серебра, может повторяться многократно, образуя микроскопические коллоидные частицы серебра, получившие название субцентров скрытого изображения . Такие субцентры не способны вызвать проявление микрокристалла, но играют важную роль в различных методах повышения светочувствительности . Критическая масса, позволяющая катализировать восстановление всего микрокристалла при проявлении, составляет минимум четыре атома серебра и называется центром проявления .

Дальнейшие исследования показали, что теория Гёрни-Мотта объясняет процессы лишь частично. Её усовершенствовал Дж. Митчелл (англ. J. W. Mitchell ) доказав в 1957 году, что присоединение к центру светочувствительности межузельного иона серебра предшествует его нейтрализации фотоэлектроном . При этом скрытое изображение может образовываться без участия центров светочувствительности, но полученные таким образом два-три атома серебра самостоятельно образуют неустойчивый центр, получивший в литературе название «предцентра» (англ. Pre-Image Speck ). Исследования конца XX века позволяют предположить, что на ранних стадиях экспонирования центры скрытого изображения образуются по механизму Митчелла, а при достаточно больших экспозициях работает теория Гёрни-Мотта .

Светочувствительность

Наиболее эффективный путь повышения светочувствительности эмульсии заключается в образовании как можно большего количества потенциальных ям, то есть дефектов кристаллической решётки галогенида серебра. Микрокристаллы с идеальной решёткой обладают низкой светочувствительностью, поскольку большинство фотоэлектронов, не встретив дефектов, рекомбинируют с ионами, и не участвуют в формировании скрытого изображения. Дефекты могут представлять собой сдвиги кристаллических слоёв, микротрещины или инородные включения. Дефекты решётки намеренно создаются в процессе приготовления фотографической эмульсии, на стадии химического созревания. Для этого добавляются соли, содержащие палладий , платину и иридий , а также соединения золота .

Эффект Шварцшильда

Низкая эффективность участия фотоэлектронов в образовании скрытого изображения приводит к нарушению закона взаимозаместимости (эффекту Шварцшильда). Эти нарушения могут происходить в двух случаях:

Слишком короткая выдержка

При очень коротких выдержках, несмотря на высокий уровень освещённости , закон взаимозаместимости нарушается, одновременно снижая светочувствительность и контраст. Явление особенно характерно для фотоэмульсий, изготовленных по устаревшим технологиям. При очень коротких выдержках в микрокристаллах образуется слишком мало центров проявления, вместо которых синтезируются неустойчивые субцентры, не способные вызвать восстановление экспонированного галогенида. Это происходит из-за одновременного образования слишком большого количества фотоэлектронов.

Эффект стал проблемой для современной технологии цифровой фотопечати , при которой фотобумага экспонируется лазерным лучом с очень коротким воздействием на каждый участок фотоэмульсии. Поэтому большинство фотоматериалов, предназначенных для цифровых мини-фотолабораторий , изготавливаются на основе хлоросеребряной эмульсии, в наименьшей степени подверженной отклонению от закона взаимозаместимости. Кроме этого эффект может быть снижен специальными добавками в эмульсионные слои, увеличивающими количество дефектов решётки. Аналогичная проблема характерна для фильм-рекордеров , в которых киноплёнка также экспонируется лазерным лучом. Это отражается на строении контратипных киноплёнок специальных сортов, предназначенных для печати дубль-негатива .

Слишком низкая освещённость

Этот эффект наиболее важен в астрофотографии , где фотоматериал экспонируется при очень малых интенсивностях света и длинных выдержках. Это объясняется слишком короткой стабильностью субцентров, не успевающих дорасти до стабильных центров проявления за время ожидания следующих фотонов. Явление приводит к снижению светочувствительности и возрастанию контраста.

Напишите отзыв о статье "Скрытое изображение"

Примечания

Литература

  • Е. А. Иофис . Фотокинотехника. - М .: «Советская энциклопедия», 1981. - С. 301, 377. - 449 с. - 100 000 экз.
  • А. В. Редько. 1. 3 Природа светочувствительности галогенида серебра. Образование скрытого и видимого фотографического изображения // Основы фотографических процессов. - 2-е изд.. - СПб. : «Лань», 1999. - С. 70-74. - 512 с. - (Учебники для ВУЗов. Специальная литература). - 3000 экз. - ISBN 5-8114-0146-9 .
  • А. В. Редько. Основы чёрно-белых и цветных фотопроцессов / Н. Н. Жердецкая. - М .: «Искусство», 1990. - С. 15-18. - 256 с. - 50 000 экз. - ISBN 5-210-00390-6 .
  • Мишель Фризо. Новая история фотографии = Nouvelle Histoire de la Photographie / А. Г. Наследников, А. В. Шестаков. - СПб. : Machina, 2008. - 337 с. - ISBN 978-5-90141-066-0 .
  • Фомин А. В. Глава II. Химическое действие света // / Т. П. Булдакова. - 3-е. - М.,: «Легпромбытиздат», 1987. - С. 53-55. - 256 с. - 50 000 экз.
  • К. В. Чибисов . Очерки по истории фотографии / Н. Н. Жердецкая. - М .: «Искусство», 1987. - С. 37-41. - 255 с. - 50 000 экз.

Отрывок, характеризующий Скрытое изображение

Лысые Горы, именье князя Николая Андреича Болконского, находились в шестидесяти верстах от Смоленска, позади его, и в трех верстах от Московской дороги.
В тот же вечер, как князь отдавал приказания Алпатычу, Десаль, потребовав у княжны Марьи свидания, сообщил ей, что так как князь не совсем здоров и не принимает никаких мер для своей безопасности, а по письму князя Андрея видно, что пребывание в Лысых Горах небезопасно, то он почтительно советует ей самой написать с Алпатычем письмо к начальнику губернии в Смоленск с просьбой уведомить ее о положении дел и о мере опасности, которой подвергаются Лысые Горы. Десаль написал для княжны Марьи письмо к губернатору, которое она подписала, и письмо это было отдано Алпатычу с приказанием подать его губернатору и, в случае опасности, возвратиться как можно скорее.
Получив все приказания, Алпатыч, провожаемый домашними, в белой пуховой шляпе (княжеский подарок), с палкой, так же как князь, вышел садиться в кожаную кибиточку, заложенную тройкой сытых саврасых.
Колокольчик был подвязан, и бубенчики заложены бумажками. Князь никому не позволял в Лысых Горах ездить с колокольчиком. Но Алпатыч любил колокольчики и бубенчики в дальней дороге. Придворные Алпатыча, земский, конторщик, кухарка – черная, белая, две старухи, мальчик казачок, кучера и разные дворовые провожали его.
Дочь укладывала за спину и под него ситцевые пуховые подушки. Свояченица старушка тайком сунула узелок. Один из кучеров подсадил его под руку.
– Ну, ну, бабьи сборы! Бабы, бабы! – пыхтя, проговорил скороговоркой Алпатыч точно так, как говорил князь, и сел в кибиточку. Отдав последние приказания о работах земскому и в этом уж не подражая князю, Алпатыч снял с лысой головы шляпу и перекрестился троекратно.
– Вы, ежели что… вы вернитесь, Яков Алпатыч; ради Христа, нас пожалей, – прокричала ему жена, намекавшая на слухи о войне и неприятеле.
– Бабы, бабы, бабьи сборы, – проговорил Алпатыч про себя и поехал, оглядывая вокруг себя поля, где с пожелтевшей рожью, где с густым, еще зеленым овсом, где еще черные, которые только начинали двоить. Алпатыч ехал, любуясь на редкостный урожай ярового в нынешнем году, приглядываясь к полоскам ржаных пелей, на которых кое где начинали зажинать, и делал свои хозяйственные соображения о посеве и уборке и о том, не забыто ли какое княжеское приказание.
Два раза покормив дорогой, к вечеру 4 го августа Алпатыч приехал в город.
По дороге Алпатыч встречал и обгонял обозы и войска. Подъезжая к Смоленску, он слышал дальние выстрелы, но звуки эти не поразили его. Сильнее всего поразило его то, что, приближаясь к Смоленску, он видел прекрасное поле овса, которое какие то солдаты косили, очевидно, на корм и по которому стояли лагерем; это обстоятельство поразило Алпатыча, но он скоро забыл его, думая о своем деле.
Все интересы жизни Алпатыча уже более тридцати лет были ограничены одной волей князя, и он никогда не выходил из этого круга. Все, что не касалось до исполнения приказаний князя, не только не интересовало его, но не существовало для Алпатыча.
Алпатыч, приехав вечером 4 го августа в Смоленск, остановился за Днепром, в Гаченском предместье, на постоялом дворе, у дворника Ферапонтова, у которого он уже тридцать лет имел привычку останавливаться. Ферапонтов двенадцать лет тому назад, с легкой руки Алпатыча, купив рощу у князя, начал торговать и теперь имел дом, постоялый двор и мучную лавку в губернии. Ферапонтов был толстый, черный, красный сорокалетний мужик, с толстыми губами, с толстой шишкой носом, такими же шишками над черными, нахмуренными бровями и толстым брюхом.
Ферапонтов, в жилете, в ситцевой рубахе, стоял у лавки, выходившей на улицу. Увидав Алпатыча, он подошел к нему.
– Добро пожаловать, Яков Алпатыч. Народ из города, а ты в город, – сказал хозяин.
– Что ж так, из города? – сказал Алпатыч.
– И я говорю, – народ глуп. Всё француза боятся.
– Бабьи толки, бабьи толки! – проговорил Алпатыч.
– Так то и я сужу, Яков Алпатыч. Я говорю, приказ есть, что не пустят его, – значит, верно. Да и мужики по три рубля с подводы просят – креста на них нет!
Яков Алпатыч невнимательно слушал. Он потребовал самовар и сена лошадям и, напившись чаю, лег спать.
Всю ночь мимо постоялого двора двигались на улице войска. На другой день Алпатыч надел камзол, который он надевал только в городе, и пошел по делам. Утро было солнечное, и с восьми часов было уже жарко. Дорогой день для уборки хлеба, как думал Алпатыч. За городом с раннего утра слышались выстрелы.
С восьми часов к ружейным выстрелам присоединилась пушечная пальба. На улицах было много народу, куда то спешащего, много солдат, но так же, как и всегда, ездили извозчики, купцы стояли у лавок и в церквах шла служба. Алпатыч прошел в лавки, в присутственные места, на почту и к губернатору. В присутственных местах, в лавках, на почте все говорили о войске, о неприятеле, который уже напал на город; все спрашивали друг друга, что делать, и все старались успокоивать друг друга.
У дома губернатора Алпатыч нашел большое количество народа, казаков и дорожный экипаж, принадлежавший губернатору. На крыльце Яков Алпатыч встретил двух господ дворян, из которых одного он знал. Знакомый ему дворянин, бывший исправник, говорил с жаром.
– Ведь это не шутки шутить, – говорил он. – Хорошо, кто один. Одна голова и бедна – так одна, а то ведь тринадцать человек семьи, да все имущество… Довели, что пропадать всем, что ж это за начальство после этого?.. Эх, перевешал бы разбойников…
– Да ну, будет, – говорил другой.
– А мне что за дело, пускай слышит! Что ж, мы не собаки, – сказал бывший исправник и, оглянувшись, увидал Алпатыча.
– А, Яков Алпатыч, ты зачем?
– По приказанию его сиятельства, к господину губернатору, – отвечал Алпатыч, гордо поднимая голову и закладывая руку за пазуху, что он делал всегда, когда упоминал о князе… – Изволили приказать осведомиться о положении дел, – сказал он.
– Да вот и узнавай, – прокричал помещик, – довели, что ни подвод, ничего!.. Вот она, слышишь? – сказал он, указывая на ту сторону, откуда слышались выстрелы.
– Довели, что погибать всем… разбойники! – опять проговорил он и сошел с крыльца.
Алпатыч покачал головой и пошел на лестницу. В приемной были купцы, женщины, чиновники, молча переглядывавшиеся между собой. Дверь кабинета отворилась, все встали с мест и подвинулись вперед. Из двери выбежал чиновник, поговорил что то с купцом, кликнул за собой толстого чиновника с крестом на шее и скрылся опять в дверь, видимо, избегая всех обращенных к нему взглядов и вопросов. Алпатыч продвинулся вперед и при следующем выходе чиновника, заложив руку зазастегнутый сюртук, обратился к чиновнику, подавая ему два письма.
– Господину барону Ашу от генерала аншефа князя Болконского, – провозгласил он так торжественно и значительно, что чиновник обратился к нему и взял его письмо. Через несколько минут губернатор принял Алпатыча и поспешно сказал ему:
– Доложи князю и княжне, что мне ничего не известно было: я поступал по высшим приказаниям – вот…
Он дал бумагу Алпатычу.
– А впрочем, так как князь нездоров, мой совет им ехать в Москву. Я сам сейчас еду. Доложи… – Но губернатор не договорил: в дверь вбежал запыленный и запотелый офицер и начал что то говорить по французски. На лице губернатора изобразился ужас.
– Иди, – сказал он, кивнув головой Алпатычу, и стал что то спрашивать у офицера. Жадные, испуганные, беспомощные взгляды обратились на Алпатыча, когда он вышел из кабинета губернатора. Невольно прислушиваясь теперь к близким и все усиливавшимся выстрелам, Алпатыч поспешил на постоялый двор. Бумага, которую дал губернатор Алпатычу, была следующая:
«Уверяю вас, что городу Смоленску не предстоит еще ни малейшей опасности, и невероятно, чтобы оный ею угрожаем был. Я с одной, а князь Багратион с другой стороны идем на соединение перед Смоленском, которое совершится 22 го числа, и обе армии совокупными силами станут оборонять соотечественников своих вверенной вам губернии, пока усилия их удалят от них врагов отечества или пока не истребится в храбрых их рядах до последнего воина. Вы видите из сего, что вы имеете совершенное право успокоить жителей Смоленска, ибо кто защищаем двумя столь храбрыми войсками, тот может быть уверен в победе их». (Предписание Барклая де Толли смоленскому гражданскому губернатору, барону Ашу, 1812 года.)
Народ беспокойно сновал по улицам.
Наложенные верхом возы с домашней посудой, стульями, шкафчиками то и дело выезжали из ворот домов и ехали по улицам. В соседнем доме Ферапонтова стояли повозки и, прощаясь, выли и приговаривали бабы. Дворняжка собака, лая, вертелась перед заложенными лошадьми.
Алпатыч более поспешным шагом, чем он ходил обыкновенно, вошел во двор и прямо пошел под сарай к своим лошадям и повозке. Кучер спал; он разбудил его, велел закладывать и вошел в сени. В хозяйской горнице слышался детский плач, надрывающиеся рыдания женщины и гневный, хриплый крик Ферапонтова. Кухарка, как испуганная курица, встрепыхалась в сенях, как только вошел Алпатыч.
– До смерти убил – хозяйку бил!.. Так бил, так волочил!..
– За что? – спросил Алпатыч.
– Ехать просилась. Дело женское! Увези ты, говорит, меня, не погуби ты меня с малыми детьми; народ, говорит, весь уехал, что, говорит, мы то? Как зачал бить. Так бил, так волочил!
Алпатыч как бы одобрительно кивнул головой на эти слова и, не желая более ничего знать, подошел к противоположной – хозяйской двери горницы, в которой оставались его покупки.
– Злодей ты, губитель, – прокричала в это время худая, бледная женщина с ребенком на руках и с сорванным с головы платком, вырываясь из дверей и сбегая по лестнице на двор. Ферапонтов вышел за ней и, увидав Алпатыча, оправил жилет, волосы, зевнул и вошел в горницу за Алпатычем.
– Аль уж ехать хочешь? – спросил он.
Не отвечая на вопрос и не оглядываясь на хозяина, перебирая свои покупки, Алпатыч спросил, сколько за постой следовало хозяину.
– Сочтем! Что ж, у губернатора был? – спросил Ферапонтов. – Какое решение вышло?
Алпатыч отвечал, что губернатор ничего решительно не сказал ему.
– По нашему делу разве увеземся? – сказал Ферапонтов. – Дай до Дорогобужа по семи рублей за подводу. И я говорю: креста на них нет! – сказал он.
– Селиванов, тот угодил в четверг, продал муку в армию по девяти рублей за куль. Что же, чай пить будете? – прибавил он. Пока закладывали лошадей, Алпатыч с Ферапонтовым напились чаю и разговорились о цене хлебов, об урожае и благоприятной погоде для уборки. излучения и преобразуемое в процессе фотографической обработки в воспринимаемое человеческим глазом изображение Для этого преобразования, называемого визуализацией, в классической фотографии используют способность в фотографических эмульсиях катализировать (см. ниже) реакции восстановления галогенидов серебра ( Hal, Hal º , , , чаще всего Br) до ; в электрофотографии - способность Скрытое фотографическое изображение электростатически притягивать частицы пигмента и т. д.

В приведённом определении Скрытое фотографическое изображение выделено лишь его основное свойство - служить причиной возникновения и предшественником видимого изображения. Такое определение является общим для самых различных процессов его образования (фотохимические изменения в кристаллах светочувствительных солей, поперечной «сшивки» молекул в светочувствительных полимерах, изменения под действием света распределения поверхностного заряда в поляризованных или заряженных диэлектриках или объёмного заряда в полупроводниках и пр.).

Скрытое фотографическое изображение представляет собой «записью изображения предметов или другой оптической информации (спектра, интерференционной картины и т. д.). Последующее рассматривание этой записи глазом в принципе необязательно - считывать записанную информацию можно непосредственно со Скрытое фотографическое изображение (например, голографически или электронным лучом). Однако при любом способе такого считывания Скрытое фотографическое изображение даёт сигнал намного более слабый, чем полученное из него видимое изображение, его уровень недостаточно превышает уровень помех; как следствие - его помехоустойчивость низка. Кроме того, Скрытое фотографическое изображение не всегда достаточно стабильно во времени, чтобы длительно сохранять его без визуализации.

В наиболее распространённом фотографическом процессе на слоях эмульсий AgHal в желатине Скрытое фотографическое изображение образуют малые группы атомов , расположенные в отдельных точках поверхности или объёма микрокристаллов AgHal, - т. н. центры Скрытое фотографическое изображение Эти группы (атомы в них ещё не связаны в кристаллическую решётку) возникают следующим образом. Под действием экспонирующего света в полупроводниковых микрокристаллах AgHal происходит внутренний фотоэффект : электроны ионов галогенида высвобождаются. Кроме того, в кристаллах AgHal всегда заранее присутствует некоторое число свободных подвижных ионов + ,»выбитых» со своих мест в результате тепловых колебаний (тепловое расшатывание решётки). Электростатически притягиваясь друг к другу, свободные электроны и ионы рекомбинируют (см. Рекомбинация ионов и электронов) - возникают нейтральные атомы . Этот процесс локализуется там, где на поверхности микрокристаллов расположены различные нарушения структуры решётки AgHal, прежде всего. примесные частицы (в частности 2 ), образующиеся ещё при изготовлении фотоэмульсии. Формирование центров Скрытое фотографическое изображение на каждом таком нарушении представляет собой многократное повторение двух элементарных актов: захвата фотоэлектрона из объёма микрокристалла (электронная стадия) и электростатического притяжения к электрону подвижного иона + (ионная стадия). При малых освещенностях фотослоя 1-я стадия протекает медленно (электроны поступают редко), и образовавшийся нейтральный атом может ионизоваться прежде, чем освободится следующий фотоэлектрон. Тем самым вероятность образования центра Скрытое фотографическое изображение , обязательно состоящего не из одного, а из нескольких атомов, замедляется, что служит причиной понижения светочувствительности с увеличением выдержки (см. Невзаимозаместимости явление ).

В ходе проявления фотографического (визуализации Скрытое фотографическое изображение ) экспонированные микрокристаллы AgHal восстанавливаются до металлического . Один из компонентов проявителя (проявляющее вещество) адсорбируется на микрокристаллах и передаёт им электроны, сам при этом окисляясь. Такая передача электронов возможна только при наличии центров Скрытое фотографическое изображение , которые должны находиться в контакте с молекулами проявляющего вещества (т. е. на поверхности микрокристаллов). В отсутствие центров Скрытое фотографическое изображение реакция восстановления не протекает; следовательно, они играют в этой реакции роль катализаторов . Каждый раз, когда центр Скрытое фотографическое изображение заряжается, приобретая электрон, этот заряд нейтрализуется одним из ближайших ионов + , и процесс превращения AgHal в продолжается до полного восстановления микрокристалла. Т. о., визуализация в случае галоген серебряных фотоэмульсий в огромной степени увеличивает количество продукта первичной фотохимической реакции.

Квантовый выход образования Скрытое фотографическое изображение в микрокристаллах AgHal (отношение числа образовавшихся нейтральных атомов серебра к числу поглощённых квантов излучения) близок к 1.

Следовательно, для возникновения центра. Скрытое фотографическое изображение , содержащего обычно от нескольких атомов до нескольких десятков атомов, один микрокристалл AgHal должен в среднем поглотить от 10 до 100 квантов. После восстановления (проявления) микрокристалл содержит 10 8 - 10 10 атомов , что соответствует коэффициенту усиления до 10 9 (по отношению к числу поглощённых квантов). Усиление Скрытое фотографическое изображение происходит и в других фотографических процессах, но далеко не в такой степени. Поэтому обычный процесс на эмульсионных слоях AgHal непревзойдён по чувствительности, хотя по некоторым показателям (например, по изобразительным характеристикам) он уступает ряду других предложенных (к 1976), процессов.

Лит.: Мейкляр П. В., Физические процессы при образовании скрытого фотографического изображения, М., 1972; Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973.

Л. Л. Картужанский.

Статья про слово "Скрытое фотографическое изображение " в Большой Советской Энциклопедии была прочитана 1716 раз

Фотография стала одним из первых методов, широко и органически воспринятых криминалистикой и творчески приспособленных к своеобразным условиям исследования вещественных доказательств.

Сотрудники судебно-экспертных учреждений как специалисты при производстве следственных действий и оперативно-розыскных мероприятий и как эксперты должны прекрасно понимать сущность фотографического процесса и знать характеристики применяемых фотоматериалов, чтобы, исходя из конкретных исходных условий, выбрать наиболее подходящие фотоматериалы и оптимальные режимы съемки и обработки.

В данной главе я попытался рассмотреть черно-белый фотографический процесс и представлен детальный механизм формирования изображения.

Физико-химическая сущность фотографического процесса

Процесс образования фотографического изображения - сложнейший многостадийный физико-химический процесс, который включает в себя следующие основные этапы:

химическое созревание (создание серебряных центров светочувствительности при получении галогеносеребряной эмульсии) - осуществляется при производстве фотоматериалов;

экспонирование (образование центров скрытого изображения при фотохимическом действии света на галогениды серебра) - происходит непосредственно при фотографировании на светочувствительные материалы;

химико-фотографическая обработка (получение видимого изображения) - осуществляется при проявлении и закреплении изображения.

При черно-белом фотографическом процессе проявление позволяет получить видимое серебряное изображение, закрепление предназначено для растворения непроявленных галогенидов серебра с последующим вымыванием из фотослоя. Кроме того, существует ряд вспомогательных и дополнительных процессов, способствующих повышению чувствительности, качества изображения и улучшению других характеристик фотографического процесса.

Химическое созревание осуществляется при производстве фотоматериалов. Эта стадия фотографического процесса здесь не рассматривается, так как она является производственным технологическим процессом фотопромышленности. Фотограф, как правило, имеет дело с уже готовыми различными фотоматериалами и выбирает их по определенным характеристикам.

Образование скрытого изображения

В твердом состоянии галогениды серебра (AgHal - AgCl, AgBr, AgI) образуют кристаллы. В кристаллах хлорида (AgCl) и бромида (AgBr) серебра ионы галогена расположены в вершинах и центрах граней куба.

Ионы серебра расположены аналогичным образом, причем образуемый ими куб смещен относительно куба, определяемого ионами галогена. Такие кристаллы относятся к классу гранецентрированных кубических кристаллов. Эти кристаллы существуют в виде агрегатных скоплений, представляющих повторение структуры, в направлениях трех координатных осей. Если AgCl и AgBr осаждаются одновременно, то образуются смешанные гранецентрированные кубические кристаллы, в которых углы решетки заняты как ионами хлора, так и ионами брома. Иодид серебра AgI при комнатной температуре и нормальном атмосферном давлении образует иную кристаллическую структуру, однако, бромид и хлорид серебра в присутствии малых концентраций AgI образуют при осаждении смешанные гранецентрированные кубические кристаллы.

Форма кристаллов зависит от процесса осаждения. Кристаллы могут быть кубическими, в форме октаэдра, пластинчатыми или нерегулярными. Однако внутренняя структура всегда такова. Средний размер зерна галогенида серебра примерно равен 1000 нм, оно содержит около 1010 гранецентрированных кубиков.

У реального кристалла галогенида имеются отклонения от идеальной структуры. Из-за нарушений равновесных условий роста, захвата примесей при кристаллизации под влиянием различных воздействий в структуре кристалла возникают нарушения - так называемые дефекты (ион серебра уходит из своего нормального положения в кристаллической решетке и свободно блуждает в междуузельном пространстве). Данные дефекты и многочисленные инородные включения в кристаллической решетке образуют центры светочувствительности, которые являются и центрами концентрирования атомов серебра в результате действия света. От величины этих центров зависит уровень светочувствительности: чем крупнее центры, тем выше светочувствительность. Обычно рост центров сопровождается увеличением размеров микрокристаллов, поэтому высокочувствительные фотоматериалы бывают крупнозернистыми, а малочувствительные - мелкозернистыми.

От зернистости светочувствительного слоя зависит зернистость изображения - неоднородность почернения равномерно экспонированного и проявленного участка фотоматериала. Зернистое строение изображения уменьшает его четкость. Линии, разорванные на отдельные зерна, становятся неровными, контуры - нерезкими. Повышенная зернистость ухудшает качество изображения. Процесс образования скрытого изображения заключается в следующем. При экспонировании фотографического слоя кванты лучистой энергии поглощаются галогенидом серебра, при этом происходит реакция фотолиза

2AgHal = 2Ag + Hal2

В экспонированных галогенидах образуются центры скрытого изображения. Серебро остается в кристалле в виде скоплений от нескольких атомов серебра (минимум 4 атома) до сотен, а галоген в виде двухатомных молекул выходит в окружающее пространство.

Образование скрытого изображения связано с размерами и распределением центров светочувствительности по объему микрокристалла галогенида серебра. Лишь крупные центры скрытого изображения проявляются, они называются центрами проявления; мелкие центры не вызывают проявления. Чем больше света попало на фотоматериал при экспонировании, тем крупнее частицы, составляющие эти центры, и тем быстрее будет идти проявление. На участках фотоматериала, которые не подвергались действию квантов света, реакция фотолиза не происходит и центры скрытого изображения не образуются.

Если экспонированный фотоматериал своевременно не проявить, скрытое изображение может исчезнуть: составляющие его атомы серебра вновь соединятся с атомами галогена и образуют исходное вещество - галогенид серебра. Это явление называется "регрессией скрытого изображения", которая усиливается при хранении экспонированного фотоматериала в теплой, влажной, загрязненной атмосфере и уменьшается при низкой температуре.

Мы знаем, что скрытое изображение представляет небольшую группу атомов серебра. Нам, кроме того, известны некоторые, явления, характерные для галогенидов серебра в темноте и на свету: существование темновой проводимости, обусловленной движением межузельных ионов Ag + ; отсутствие подвижных ионов Hal-; возникновение при освещении свободных электронов и положительных дырок, из которых первые гораздо, подвижнее вторых; существование в решетке кристалла галогенида серебра нарушений, наиболее значительные из которых имеют примесную природу, возникают в ходе химического созревания и оказывают - наибольшее влияние на светочувствительность кристаллов, т. е. на их способность к образованию скрытого изображения. Надо теперь из этих разрозненных сведений построить общую картину. Впервые это сделали в 1938 г. английские физики Р. Гэрни и Н. Мотт (впоследствие лауреат Нобелевской премии), Хотя в дальнейшем: предложенная ими картина подверглась дополнению (за 40 с лишним лет это неизбежно), а кое в чем претерпела и изменения, общие ее положения сохранились по сей день-редкий пример научного долголетия!

Согласно Гэрни и Мотту, дело обстоит следующим образом. Каждый микрокристалл фотоэмульсии при освещении ведет себя независимо от других, и его последующая судьба -возникновение способности к проявлению или ее отсутствие - не зависит от того, что случится с его соседями. Освещение вызывает в микрокристалле галогенида серебра - внутренний фотоэффект, т. е. появление свободных электронов, перемещающихся в пределах микрокристалла до тех пор, пока они не попадут в какие-либо потенциальные ямы, где задержатся на более или менее длительное время. За время их нахождения в. яме (тем самым яма приобрела отрицательный заряд) к ним: подходят находящиеся вблизи подвижные ионы Ag+, которые- влечет обычная сила притяжения разноименных зарядов. Результатом является возникновение группы атомов серебра по реакции

nе - + nAg + nAg 0

Поскольку в мелкой яме электроны могли бы и не задержаться надолго и уйти из нее еще до подхода ионов Ag+, главную роль в образовании групп атомов играют наиболее глубокие ямы, из которых электроны почти не имеют шансов уйти, а как раз такими ямами, как мы помним, служат примесные частицы, возникшие при химическом созревании. Так объединился в одно целое ряд разрозненных до сих пор деталей.

В этой картине удалось найти место и для других давно известных экспериментальных фактов. Остановимся на двух из них. Во-первых, было доказано, что скрытые изображения, созданные действием света, поглощаемого самим галогенидом серебра (сине-фиолетового, а также ультрафиолетового), и действием света (зеленого, желтого, красного), поглощаемого красителем-оптическим сенсибилизатором, совершенно одинаковы. Во-вторых, как уже говорилось, восстановление галогенида серебра до металла в проявителе не идет в отсутствие скрытого изображения. Оба факта в рамках теории Гэрни-Мотта вполне естественны. Действительно, если поглощение света красителем вызовет освобождение в нем электрона, передаваемого затем в галогенид серебра, или передачу в галогенид энергии возбуждения, полученной красителем и достаточной для освобождения электрона в самом галогениде, то все остальное будет происходить так, как если бы свет поглощался непосредственно в микрокристалле. Правда, и по сей день нет окончательного ответа на вопрос, что же делает краситель- передает ли электрон или энергию возбуждения, но возникновение в галогениде серебра свободных электронов после поглощения света красителем доказано прямыми опытами, а значит, ответ, вытекающий из теории Гэрни - Мотта, остается правильным независимо от деталей картины.

Нетрудно понять и второй из названных фактов. Восстановление с точки зрения химии есть передача электронов от восстановителя (который сам при этом окисляется) к восстанавливаемому веществу. Если проявляющее вещество, как и положено восстановителю, передаст микрокристаллу галогенида серебра электроны, те начнут перемещаться по кристаллу, пока не закрепятся в какой-либо потенциальной яме и начнут притягивать к себе ионы Ag+. Очевидно, наиболее прочным будет закрепление их в наиболее глубоких ямах, а такими, как мы знаем, будут места сосредоточения скрытого изображения. К этому добавим, что образование атома серебра в яме “углубляет” ее; иными словам ми, процесс роста частицы серебра на яме путем поодиночного добавления атомов есть в то же время процесс углубления ямы. Значит, со всеми электронами, переходящими от восстановителя. будет происходить то же, что и с электронами, появившимися вследствие фотоэффекта, и рост частицы серебра, начавшийся еще на стадии экспонирования, будет продолжаться на стадии проявления - подчеркиваем, именно продолжаться, а не начинаться.

Не забудем и о судьбе положительных дырок, образующихся одновременно со свободными электронами. Гэрни и Мотт считали, что в образовании скрытого изображения дырки не играют никакой роли по следующим причинам: они малоподвижны, и когда электрон уже далек от места своего освобождения, дырка еще почти не сдвинулась оттуда, т. е. их воссоединение (рекомбинация, как говорят в физике) маловероятно, и процесс вспять не пойдет; дырка же, дошедшая наконец до поверхности кристалла, застает там уже не электроны, а готовые атомы Ag°, и хотя в химическом смысле дырка есть просто атом Наl°, реагировать с атомом Ag° ей трудно - мешает и малая подвижность, и присутствие сразу связывающей ее желатины. О том, насколько точны эти утверждения, у нас.еще будет случай поговорить, но они по крайней мере не просто исключают дырки из участия в фотолизе, а дают этому определенные основания.

Какие бы изменения и дополнения ни вносились позднее в теорию Гэрни - Мотта, одно осталось незыблемым - существование двух стадий образования скрытого изображения, сначала электронной, затем ионной. Сейчас мы перейдем к изложению более детальных и более современных представлений, но в них чередование электронной и ионной стадий сохранится. Основные же изменения, каких теория Гэрни - Мотта потребовала уже вскоре после своего появления, вытекали из соображений о длительности двух стадий. Начнем по порядку.

Гэрни и Мотт допускали, что все свободные электроны могут закрепиться в одной яме. Однако первый попавший туда электрон будет по закону Кулона отталкивать другие идущие к этой яме электроны; простой расчет показывает, что он не подпустит другие электроны к яме ближе, чем на 50-60 А, т. е. на десяток постоянных решетки галогенида серебра, а это больше размера самой ямы. Значит, пока заряд первого закрепившегося в яме электрона не будет нейтрализован подошедшим ионом Ag+, другой электрон к яме подойти не может и если даже он и окажется в яме, то не в этой же, а в другой; вместо возникновения и беспрепятственного роста группы атомов серебра в одном месте начнется в большей или меньшей мере распыление атомов, в том числе и одиночных, по многим местам. Чтобы довести эти соображения до сравнения с прямым опытом, прикинем, о каких временах идет речь.

Точечный заряд е (электрона) создает на расстоянии R электрическое поле с напряженностью e/R 2 (здесь -диэлектрическая проницаемость среды, в данном случае AgHal). Из физики известно также, что поле с напряженностью Е создает через поверхность S ток I == ES ( - удельная электрическая проводимость среды, в данном случае темновая в AgHal, т. е. ионная). Поскольку поверхность вокруг точечного заряда есть сфера, то S == 4R 2 , и поэтому I == 4e/. С другой стороны, сила тока I есть заряд, прошедший через данную поверхность за единицу времени, т. е. Q/t. Пройдет же через сферу ровно столько заряда, сколько нужно для нейтрализации заряда электрона; значит Q == е. Отсюда время, нужное для нейтрализации этого заряда, есть

t =Q/I = е/(4e/) = /4

Раньше уже говорилось, что для бромида серебра о w W Ю- 11 м/Ом-мм 2 или 10- 5 Ом--м- 1 . Что же касается диэлектрической проницаемости, она составляет для бромида серебра около 13 относительно вакуума, а так как для вакуума е==1,11 .Ю- 10 Ф/м, то для AgBr в = 1,45-Ю- 9 Ф/.м, откуда t w Ю"" 5 с. Для хлорида серебра е относительно вакуума равна 12,2, о w 10~ 10 м/Ом-мм 2 , а значит, t близко к Ю~ 4 с. Раньше указанного времени следующий электрон не сумеет подойти к яме и принять участие в росте группы атомов серебра, т. е. скрытого изображения. Но это, возможно, и не потребуется:

если, скажем, за все время экспонирования микрокристалл поглотит десяток-другой квантов, то в среднем время от возникновения одного свободного электрона до возникновения другого составит одну десятую или одну двадцатую всей выдержки. В обычных условиях выдержка редко бывает меньше 10 -2 с, т. е. от появления одного электрона в яме до появления там другого в среднем пройдет больше времени, чем нужно для нейтрализации заряда первого электрона, и ничто не помешает росту группы атомов серебра в одном месте. Исключение составят случаи очень малых выдержек, интересные для теории и для ряда чисто технических задач, но почти невозможные в фотолюбительской практике; о них речь еще впереди.

Слишком быстрый темп возникновения свободных электронов не является единственным препятствием для роста группы атомов. Препятствием, хотя и по иным причинам, оказывается также слишком медленный темп их возникновения, что случается при больших выдержках и низких освещенностях - ситуации не столь редкой в практике фотолюбителя. Действительно, медленный темп означает, что промежутки времени, в течение которых первый образовавшийся атом остается в одиночестве, велики: так, при выдержке порядка секунды эти промежутки доходят до десятых долей секунды, а при выдержке порядка минуты-до нескольких секунд, что по атомным масштабам составляет огромное время. Предоставленный самому себе, не связываемый никакими. взаимодействиями с другими атомами, поскольку их нет, чужеродный по отношению к решетке, где силы имеют электрическую природу и не воздействуют на электрически нейтральную частицу, такой атом имеет немалые шансы “распадаться” на исходные составные части-электрон и ион Ag+, используя для распада окружающую тепловую энергию. Химически такое утверждение означает просто обратимость реакции

е - + Ag + Ag 0

т. е. явление достаточно известное. Имеются многочисленные, хотя и не во всем согласующиеся друг с другом опытные данные, по которым время жизни атома Ag 0 столь мало, что не превышает при комнатной температуре тысячных долей секунды, а чаще бывает и того меньше. Значит, если второй электрон “запаздывает” с появлением вблизи данной ямы (по причине вполне уважительной - он еще просто не возник), то когда он, наконец, возникнет и подойдет к данной яме, у него немало шансов застать ее пустой: имевшийся ион Ag+ уже вернулся к межузельному состоянию и перемещается по кристаллу, и электрон тоже ушел (его там никто не удерживал-иона нет, решетка нейтральна) и движется по кристаллу; не исключено “возвращение блудного сына” к иону галогена (ныне дырке), откуда электрон был освобожден при поглощении кванта, т. е. рекомбинация. Таким образом, образование частицы скрытого изображения придется начинать заново, и чем реже будут возникать свободные электроны, тем более вероятен именно такой ход событий.

Допустим, однако, что обстоятельства благоприятны и там, где уже есть один атом, возникнет также и второй. Этим ситуация резко изменяется: хотя два атома еще не составляют катализатора проявления, их взаимовлияние стабилизирует пару, и время жизни обоих атомов резко увеличивается, т. е. теперь они скорее всего дождутся прихода третьего электрона, образования третьего атома, не распадаясь, а значит, рост группы атомов продолжится беспрепятственно. Многочисленные опыты (о некоторых речь впереди) показали, что время жизни группы даже из двух атомов доходит до многих суток и во всяком случае измеряется часами. Вместе с тем считать их абсолютно устойчивыми тоже нельзя. Вообще, можно сказать, что среди любых частиц скрытого изображения абсолютно устойчивых не бывает, и даже вполне завершенное скрытое изображение, имеющее свойства катализатора, может постепенно распадаться (уменьшаясь на один атом за раз), если время между экспонированием и проявлением велико, скажем, порядка месяцев или лет, а особенно если экспонированный материал хранится при повышенной температуре.

Трудности роста при высоком темпе возникновения свободных электронов не исчерпываются распылением серебра по многим ямам вместо одной. Дело в том, что глубоких ям, надолго захватывающих электрон и тем гарантирующих ему подход иона Ag+, немного и расположены они, как уже сказано, на поверхности микрокристаллов, т. е. там, где при химическом созревании шли реакции галогенида серебра с примесями желатины и где после погружения в проявитель легче всего получать электроны от проявляющего вещества. Если свободных электронов много (темп их образования высок), больше, чем имеется глубоких поверхностных ям, электроны по необходимости закрепляются на всех других мало-мальски глубоких ямах, а среди таких большинство связано с протяженными дефектами - трещинами, дислокациями и другими нарушениями в объеме микрокрибталлов. Значит, скрытое изображение начнет образовываться не только на поверхности, но и внутри микрокристаллов, а там прямого контакта с восстановителем нет и функционирование частиц серебра в качестве катализатора проявления невозможно. Хорошо еще, если проявитель содержит растворитель галогенида серебра (им в большинстве проявителей является сульфит натрия и в некоторой мере бромид калия) -тогда спустя некоторое время после погружения в проявитель поверхность микрокристаллов растворится и доступ восстанавливающего раствора к скрытому изображению будет открыт; если же взят проявитель мало или вовсе не растворяющий, возникает парадоксальная ситуация-скрытое изображение есть, но выполнить свою основную функцию катализатора ему мешают внешние обстоятельства и проявление не идёт.

Такова более детальная картина, вытекающая из представлений Гэрни и Мотта. Нам еще не раз придется возвратиться к ней в следующем разделе, поскольку из нее прямо следуют некоторые соображения, важные для практической фотографии. В качестве иллюстрации к сказанному приведем здесь два снимка (рис. 13), многое проясняющие.

Принцип получения цветных фотографических изображений

Получение цветных фотографических изображений основано на трехцветно теории зрения. Согласно этой теории светоощущающий aппарат глаза состоит из трех типов элементов, имеющих разную цветочувствительность. Элементы одного типа чувствительны главным образом к синим лучам спектра, второго - к зеленым и третьего - к красным. Красные лучи вызывают возбуждение красночувствительных элементах, создавая впечатление красного цвета, и т. д. L-месь лучей различных цветов способна возбуждать в равной степени все цветочувствительные элементы глаза и вызывает у нас ощущение белого цвета. В результате различных комбинаций степени возбуждения трех типов цветочувствительных элементов глаза получается ощущение всех существующих цветов и всевозможных цветовых оттенков.

При получении цветных фотографических изображений вначале осуществляют разделение оптического изображения на три 3 составляющие, в спектральном отношении соответствующие зонам чувствительности трех приемников световой энергии. Этот процесс называется цветоделением. Далее следует градационный процесс, в ходе которого регистрируются оптические плотности каждого из цветоделенных изображений. В заключительном процессе синтеза цвета оптические плотности цветоделенных изображений управляют в трех цветовых зонах интенсивностью света. Таким образом, для каждой из цветовых зон формируется свое. изображение, а их совмещение обеспечивает цветное воспроизведение объекта съемки.

В цветной фотографии цветоделенные изображения формируются из красителей, цвет которых является дополнительным к основным цветам. Наиболее распространенный способ образования красителей основан на принципе цветного проявления. В упрощенном виде процесс цветного проявления может быть представлен следующей схемой:

AgHal + Red = Ag° + Hal + Ox (1)

Ox + компоненты = краситель (2)

где Red - цветное проявляющее вещество; Ox - окисленная форма цветного проявляющего вещества; Ag° - металлическое серебро.

Легко заметить, что первая стадия процесса (1) практически совпадает с реакцией черно-белого проявления. Отличие заключается в том, что в данном случае применяются цветные проявляющие вещества. (Особенности их действия рассмотрены в следующем разделе.) Компоненты, или, как их еще называют в литературе, цветные либо цветообразующие компоненты, могут находиться в растворе проявителя (диффундирующие компоненты) или вводятся в светочувствительный слой (закрепленные компоненты). В зависимости от химического строения компоненты при взаимодействии с окисленной формой проявляющего вещества образуют желтые, пурпурные или голубые красители.

Реакции, соответствующие уравнениям (1) и (2), протекают в фотографическом слое в процессе цветного проявления практически одновременно. Краситель образуется в количестве, пропорциональном количеству выделившегося металлического серебра. Таким образом, в светочувствительном слое формируются два совмещенные изображения, состоящие из серебра и из красителей. В процессах обработки, следующих за проявлением, серебряное изображение и неэкспонированный галогенид серебра удаляются, после чего в фотографическом слое остается изображение, состоящее только из красителя.

Для получения цветных изображений необходим специальный многослойный цветной фотоматериал, содержащий обычно закрепленные компоненты. На рис. 30 показаны как строение такого материала, так и способ формирования изображения в нем. Основа может представлять собой пленку (например, триацетатную, полиэтилентерефталатную) или бумагу (с баритовым или полиэтиленовым покрытием). Фильтровый слой представляет собой коллоидное серебро, диспергированное в желатине. В некоторых цветных фотоматериалах этот слой отсутствует. Зато есть такие материалы, где между нижним эмульсионным слоем и основой помещается противоореольный слой. Благодаря подбору соответствующих компонент в светочувствительных слоях возникают изображения, по цвету дополнительные лучам той зоны спектра, которую воспринимает данный слой. Так, в верхнем синечувствительном слое образуется желтый краситель; в среднем слое, воспринимающем зеленые лучи (синие поглощаются фильтровым слоем) образуется пурпурный краситель; подобным образом в нижнем красночувствительном слое возникают голубые красители. Порядок расположения слоев может быть иным. Однако везде неизменным остается принцип Нормирования цветного изображения в трех слоях, в которых возникают соответствующие условиям цветоделения красители.

Для каждого из трех красочных изображений может быть построена характеристическая кривая, представляющая собой зависимость оптической плотности соответствующего красителя от логарифма экспозиции (см. раздел 2.3). По этим характеристическим кривым могут быть определены значения светочувствительности, коэффициента контрастности, максимальной оптической плотности, оптической плотности вуали, полезного интервала экспозиций. Для характеристики соотношения сенситометрических параметров отдельных слоев цветных фотоматериалов введено понятие баланса. Баланс по чувствительности Б ч определяется соотношением величин светочувствительности для наиболее и наименее чувствительного слоев:

Б ч = S наиб /S наим

В оптимальном случае Б ч = 1, а в соответствии со стандартом величина Б ч не должна превышать 2,0-2,5 для цветных негативных пленок и 1,6-1,8 для обращаемых. Разбалансировка по чувствительности как негативных, так и позитивных фотоматериалов исправляется с помощью корректирующих светофильтров.

Весьма важной характеристикой цветных фотоматериалов является баланс по контрасту Б к, определяемый как разность наибольшего и наименьшего коэффициентов контрастности отдельных слоев:

Б к =  наиб -  наим

В оптимальном случае Б к = 0, однако на практике этого не удается достигнуть. Поскольку исправить разбалансировку по 8контрасту очень трудно, величина 6к не должна превышать 0,1 для цветных негативных пленок, 0,3 - для цветных обращаемых пленок, 0,5 - для цветных фотобумаг.

Изготовление цветных фотоматериалов стараются осуществлять таким образом, чтобы разбалансировка слоев по чувствительности и контрасту была наименьшей. При экспонировании цветных фотоматериалов необходимо не только учитывать общий уровень освещенности (как для черно-белых фотоматериалов), но и регламентировать спектральный состав освещения. Наконец, для обеспечения баланса следует строго соблюдать рекомендации по химико-фотографической обработке цветных фотоматериалов.

Цветные проявляющие вещества и компоненты

Основным элементом цветных проявителей (так же, как и черно-белых) является проявляющее вещество. К нему помимо обычных требований предъявляются следующие специфические требования.

1. Продукты окисления проявляющего вещества должны вступать в реакцию с цветными компонентами и образовывать в фотографическом слое различные красители в зависимости от химического строения компонент.

2. Спектральные характеристики (цвет) образующихся в процессе проявления красителей должны удовлетворять требованиям цветовоспроизведения.

3. Образующиеся в процессе проявления красители должны быть светостойкими и долговечными.

Имеется ряд веществ, которые в той или иной мере отвечают этим основным требованиям. К ним относятся производные парафенилендиамина.

Различные вещества имеют различную скорость образования красителей в процессе цветного проявления. Так, диэтилпарафенилендиамин (ЦПВ-1) обеспечивает большую эффективность цветного проявления, чем этилгидроксиэтилпарафенилендиамин (ЦПВ-2), но зато он характеризуется значительно более высокой аллергической активностью, т. е. способностью вызывать экзему у людей, соприкасающихся с цветным проявителем. Поэтому в проявителях для цветных фотобумаг обычно используется менее токсичный ЦПВ-2. Чтобы повысить эффективность проявления можно увеличить концентрацию ЦПВ-2 в проявителе. Это приводит к некоторому повышению скорости проявления и коэффициента контрастности. Такой прием может оказаться полезным при изготовлении отпечатков с малоконтрастных цветных негативов. "Однако чрезмерное увеличение концентрации проявляющего вещества может привести к падению фотографической широты, росту вуали и ухудшению баланса. Обычно оптимальные концентрации составляют 2,5-3,0 г/л для ЦПВ-1 и 4,5-5,0 г/л для ЦПВ-2. Основные требования, предъявляемые комнопентам,- отсутствие собственной окраски и способность образовывать краситель при взаимодействии с продуктами окисления цветные проявляющих веществ. В качестве компонент часто используют производные  -нафтола (образуют голубые красители) и вещества, содержащие активную метнлсновую группу (образуют пурпурные и желтые красители). Пример суммарной реакции цветного проявления с участием Ц11В-2 и а-нафтола, протекающей с образованием голубого иидоаинлнпового красителя, приводится ниже [уравнение (3)]. Для простоты промежуточные стадии этой реакции не рассматриваются: -Нафтол вводится в проявляющий раствор и представляет собой так называемую диффундирующую компоненту. Однако обычно используются не диффундирующие компоненты, а закрепленные, т. е. находящиеся в трех светочувствительных слоях цветного фотоматериала. Эти компоненты бывают двух основных типов - недпффуидирующие и гидрофобные.

Не диффундирующие компоненты отличаются от диффундирующих прежде всего наличием алифатического остатка, например C 17 H 35 , C 18 H 37 . Это приводит к уменьшению диффузионной подвижности как компоненты, так и образующегося из нее красителя. В то же время недифундирующие компоненты благодаря наличию гидрофильных групп достаточно растворимы в водных растворах, что обеспечивает их введение в фотографическую эмульсию.

Гидрофобные (или защищенные) компоненты нерастворимы или очень плохо растворимы в воле. Такие компоненты растворяют в органических растворителях и диспергируют в желатиновой галогенидосеребряной эмульсии перед нанесением на основу.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://chemistry.narod.ru/


Криминалистические - используются в области технико-криминалистических научных исследований: фотографических, трасологических, одорологических, баллистических и др. - структурно-криминалистические - методы построения в криминалистике определенных структурных систем (например, плана расследования по уголовному делу, тактического приема, методической рекомендации) По источнику происхождения...

Уже было противоречие: с одной стороны - стремление к новаторству, а с другой - оглядка назад, ретроспективизм. Многие тогда видели в «стиле модерн» некий «венец художественного развития» европейской культуры, единый интернациональный стиль. Волнистые ли¬нии орнаментики Ар Нуво сравнивали с крито-микенским искусством, «модерн» находили у этрусков, в итальянском Манье¬ризме конца XVI в., в стиле...

И поступает в смеситель, где смешивается с растворами реагентов; в результате в эмульсификационной среде возникают зародыши микрокристаллов галогенида серебра. В дальнейшем в аппарате 4 образуется фотографическая эмульсия, которая непрерывно циркулирует через зону смешения в смесителе 3 и обогащается новыми образованиями галогенида серебра, одновременно с течением кристаллизационного процесса в...

ленного спектрального состава. В изучении строения и значения хлорофилла видное место занимают работы великого русского ученого К.А.Тимирязева. Механизм фотосинтеза еще не выяснен до конца. ФОТОГРАФИЯ Химическое действие света лежит в основе фотографии. Слово «фотография» происходит от греческого «фото» – свет, «графо» – рисую, пишу. Фотография – рисование светом, светопись – была...

3.1.1 Образование скрытого изображения

В твердом состоянии галогениды серебра (AgHal - AgCl, AgBr, AgI) образуют кристаллы. В кристаллах хлорида (AgCl) и бромида (AgBr) серебра ионы галогена расположены в вершинах и центрах граней куба.

Ионы серебра расположены аналогичным образом, причем образуемый ими куб смещен относительно куба, определяемого ионами галогена. Такие кристаллы относятся к классу гранецентрированных кубических кристаллов. Эти кристаллы существуют в виде агрегатных скоплений, представляющих повторение структуры, в направлениях трех координатных осей. Если AgCl и AgBr осаждаются одновременно, то образуются смешанные гранецентрированные кубические кристаллы, в которых углы решетки заняты как ионами хлора, так и ионами брома. Иодид серебра AgI при комнатной температуре и нормальном атмосферном давлении образует иную кристаллическую структуру, однако, бромид и хлорид серебра в присутствии малых концентраций AgI образуют при осаждении смешанные гранецентрированные кубические кристаллы.

Форма кристаллов зависит от процесса осаждения. Кристаллы могут быть кубическими, в форме октаэдра, пластинчатыми или нерегулярными. Однако внутренняя структура всегда такова. Средний размер зерна галогенида серебра примерно равен 1000 нм, оно содержит около 1010 гранецентрированных кубиков.

У реального кристалла галогенида имеются отклонения от идеальной структуры. Из-за нарушений равновесных условий роста, захвата примесей при кристаллизации под влиянием различных воздействий в структуре кристалла возникают нарушения - так называемые дефекты (ион серебра уходит из своего нормального положения в кристаллической решетке и свободно блуждает в междуузельном пространстве). Данные дефекты и многочисленные инородные включения в кристаллической решетке образуют центры светочувствительности, которые являются и центрами концентрирования атомов серебра в результате действия света. От величины этих центров зависит уровень светочувствительности: чем крупнее центры, тем выше светочувствительность. Обычно рост центров сопровождается увеличением размеров микрокристаллов, поэтому высокочувствительные фотоматериалы бывают крупнозернистыми, а малочувствительные - мелкозернистыми.

От зернистости светочувствительного слоя зависит зернистость изображения - неоднородность почернения равномерно экспонированного и проявленного участка фотоматериала. Зернистое строение изображения уменьшает его четкость. Линии, разорванные на отдельные зерна, становятся неровными, контуры - нерезкими. Повышенная зернистость ухудшает качество изображения. Процесс образования скрытого изображения заключается в следующем. При экспонировании фотографического слоя кванты лучистой энергии поглощаются галогенидом серебра, при этом происходит реакция фотолиза

2AgHal = 2Ag + Hal2

В экспонированных галогенидах образуются центры скрытого изображения. Серебро остается в кристалле в виде скоплений от нескольких атомов серебра (минимум 4 атома) до сотен, а галоген в виде двухатомных молекул выходит в окружающее пространство.

Образование скрытого изображения связано с размерами и распределением центров светочувствительности по объему микрокристалла галогенида серебра. Лишь крупные центры скрытого изображения проявляются, они называются центрами проявления; мелкие центры не вызывают проявления. Чем больше света попало на фотоматериал при экспонировании, тем крупнее частицы, составляющие эти центры, и тем быстрее будет идти проявление. На участках фотоматериала, которые не подвергались действию квантов света, реакция фотолиза не происходит и центры скрытого изображения не образуются.

Если экспонированный фотоматериал своевременно не проявить, скрытое изображение может исчезнуть: составляющие его атомы серебра вновь соединятся с атомами галогена и образуют исходное вещество - галогенид серебра. Это явление называется "регрессией скрытого изображения", которая усиливается при хранении экспонированного фотоматериала в теплой, влажной, загрязненной атмосфере и уменьшается при низкой температуре.

Проявление - процесс превращения скрытого изображения, полученного в светочувствительном слое фотоматериала под действием света или другого излучения, в видимое серебряное изображение. Чтобы проявить светочувствительный слой...

Естественно-научные основы фотографии

В проявленном фотоматериале содержится видимое серебряное изображение и галогениды серебра, которые все еще являются светочувствительными соединениями. Если эти галогениды серебра не удалить, то они постепенно начнут на свету темнеть...

Естественно-научные основы фотографии

На светочувствительном слое можно получить сразу позитивное изображение фотографируемых объектов. Этот метод называется в фотографии "методом обращения"...

Ворсистость образуется при следующих параметрах работы: -радиус окружности движения нижнего держателя 50 мм; -движение нижнего держателя - качательное; -нагрузка верхнего держателя на нижний 500 гс; -удельное давление на испытуемую часть ткани...

Изучение приборов и методик определения пиллингуемости текстильных материалов на соответствие ГОСТ 14326-73

Пилли образуются при следующих параметрах работы прибора: -радиус окружности движения нижнего держателя 3 мм; -движение нижнего держателя -- по окружности в одном направлении; -нагрузка верхнего держателя на нижний 100 гс; -удельное давление на...

История появления, механизмы, устройства и принцип работы швейной машины

Механизм иглы сообщает игле, в ушко которой заправлена нитка, возвратно-поступательное или колебательное движение. В результате осуществляется прокол иглой материала, провод через него верхней нитки и создание у ушка иглы петли...

Машиностроительное черчение. Свойства металлов и сплавов

Основные правила выполнения изображения Чертеж содержит изображения, которые в зависимости от их содержания делят на виды, разрезы и сечения. Изображения предмета позволяют установить формы отдельных его поверхностей...

Обработка заготовок на токарных станках

Процесс резания (стружкообразования) - сложный физический процесс, сопровождающийся большим тепловыделением, деформацией металла, изнашиванием режущего инструмента и наростообразованием на резце...

Основы негативного процесса обработки фотоматериалов

Проявление -- часть фотографического процесса для получения видимого изображения из скрытого (полученного экспонированием фотоматериала) посредством химического или физического процесса. Фотография. Энциклопедический справочник...

Особенности эксплуатации обводняющихся газовых скважин

Если дебит газа достаточно высокий, то газ может увлекать за собой воду из подстилающей водоносной зоны, даже если она не перфорирована в скважине...

Первые упоминания о способах добычи нефти и газа

История науки знает много случаев, когда вокруг какой-нибудь проблемы разгораются жаркие споры. Такие споры идут и о происхождении нефти. Они начались в конце прошлого столетия и продолжаются до сих пор, то затихая, то вспыхивая вновь...

Проект монтажа рентгенодиагностического комплекса на три рабочих места

Проектирование камеры шлюза

Расчет выполняется в соответствии с п. 6.2 СНиП 2.02.08-87. Для Внецентренно сжатых элементов расчет по образованию трещин, нормальных к продольной оси элемента производим: где (при однорядном армировании); ; ;...

Разработка системы автоматизации хлебобулочного производства

Замес теста - важнейшая технологическая операция, от которой в значительной степени зависит дальнейший ход технологического процесса и качество хлеба. При замесе теста из муки, воды, дрожжей...

Резьба и ее характеристики

Резьба по ГОСТу 2.311-68 на стержне изображается условно сплошными основными линиями по наружному диаметру и тонкими сплошными линиями по внутреннему. На видах, полученных проецированием на плоскость параллельно оси стержня...