Найти магнитное поле проводника с током. Магнитное поле вокруг проводника с током. Магнитное поле соленоида

где r – расстояние от оси проводника до точки.

Согласно предположению Ампера в любом теле существуют микроскопи­ческие токи (микротоки), обусловленные движением электронов в атомах. Они создают свое магнитное поле и ориентируются в магнитных полях макротоков. Макроток - это ток в проводнике под действием ЭДС или разности потенциа­лов. Вектор магнитной индукции характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками. Магнитное поле макротоков описывается также и вектором напряженности. В случае однородной изо­тропной среды вектор магнитной индукции связан с вектором напряженности соотношением

(5)

где μ 0 - магнитная постоянная; μ- магнитная проницаемость среды, показы­вающая, во сколько раз магнитное поле макротоков усиливается или ослабляет­ся за счет микротоков среды. Иначе говоря, μ показывает, во сколько раз век­тор индукции магнитного поля в среде больше или меньше, чем в вакууме.

Единица напряженности магнитного поля - А/м. 1А/м - напряженность такого поля, магнитная индукция которого в вакууме равна
Тл. Земля пред­ставляет собой огромный шарообразный магнит. Действие магнитного поля Земли обнаруживается на ее поверхности и в окружающем пространстве.

Магнитным полюсом Земли называют ту точку на ее поверхности, в кото­рой свободно подвешенная магнитная стрелка располагается вертикально. По­ложения магнитных полюсов подвержены постоянным изменениям, что обусловлено внутренним строением нашей планеты. Поэтому магнитные полюса не совпадают с географическими. Южный полюс магнитного поля Земли рас­положен у северных берегов Америки, а Северный полюс - в Антарктиде. Схе­ма силовых линий магнитного поля Земли показана на рис. 5 (пунктиром обо­значена ось вращения Земли): - горизонтальная составляющая индукции магнитного поля; N r , S r - географические полюсы Земли; N, S - магнитные по­люсы Земли.

Направление силовых линий магнитного поля Земли определяется с по­мощью магнитной стрелки. Если свободно подвесить магнитную стрелку, то она установится по направлению касательной к силовой линии. Так как маг­нитные полюсы находятся внутри Земли,магнитная стрелка устанавливается не горизонтально, а под некоторым углом α к плоскости горизонта. Этот угол α называют магнитным наклонением. С приближением к магнитному полюсу угол α увеличивается. Вертикальная плоскость, в которой расположена стрелка, называется плоскостью магнитного меридиана, а угол между магнитным игеографическим меридианами - магнитным склонением. Силовой характеристикой магнитного поля, как уже отмечалось, является магнитная индукция В. Ее значение невелико и изменяется от 0,42∙10 -4 Тл на экваторе до 0,7∙10 -4 Тл у магнитных полюсов.

Вектор индукции магнитного поля Земли можно разделить на две состав­ляющие: горизонтальную и вертикальную
(рис. 5). Укрепленная навертикальной оси магнитная стрелка устанавливается в направлении горизон­тальной составляющей Земли . Магнитное склонение, наклонение α и горизонтальная составляющая магнитного поля являются основными пара­метрами магнитного поля Земли.

Значение определяют магнитометрическим методом, который основан на взаимодействии магнитного поля катушки с магнитной стрелкой. Прибор, называемый тангенс-буссолью, представляет собой небольшую буссоль (ком­пас с лимбом, разделенным на градусы), укрепленную внутри катушки 1 из не­скольких витков изолированной проволоки.

Катушка расположена в вертикальной плоскости. Она создает добавочное магнитное поле к (диаметр катушки и число витков указываются на приборе).

В центре катушки помещается магнитная стрелка 2. Она должна быть не­большой, чтобы можно было принимать индукцию, действующую на ее полю­сы, равной индукции в центре кругового тока. Плоскость контура катушки ус­танавливается так, чтобы она совпадала с направлением стрелки и была пер­пендикулярна горизонтальной составляющей земного поля r . Под действием r индукции поля Земли и индукции поля катушки стрелка устанавливается по направлению равнодействующей индукции р (рис. 6 а, б).

Из рис. 6 видно, что

(6)

Индукция магнитного поля катушки в центре –

7)

где N - число витков катушки; I - ток, идущий по ней; R - радиус катушки. Из (6) и (7) следует, что

(8)

Важно понять, что формула (8) является приближенной, т.е. она верна только в том случае, когда размер магнитной стрелки намного меньше радиуса контура R. Минимальная ошибка при измерении фиксируется при угле откло­нения стрелки ≈45°. Соответственно этому и подбирается сила тока в катушке тангенс-буссоли.

Порядок выполнения работы

    Установить катушку тангенс-буссоли так, чтобы ее плоскость совпала с на­ правлением магнитной стрелки.

    Собрать цепь по схеме (рис. 7).

3. Включить ток и измерить углы отклонения у концов стрелки
и
. Данные занести в таблицу. Затем с помощью переключателя П изменить направление тока на противоположное, не меняя величины силы тока, и измерить углы отклонения у обоих концов стрелки
и
вновь. Данные занести в таблицу. Таким образом, устраняется ошибка определения угла, связанная с несовпадением плоскости катушки тангенс-буссоли с плоскостью магнитно­го меридиана. Вычислить

Результаты измерений I и занести в таблицу 1.

Таблица 1

    Вычислить В ср. по формуле

где n - число измерений.

    Найти доверительную границу общей погрешности по формуле

,

Где
- коэффициент Стьюдента (при=0,95 иn=5
=2,8).

    Результаты записать в виде выражения

.

Контрольные вопросы

    Что называется индукцией магнитного поля? Какова единица ее измерения? Как определяется направление вектора магнитной индукции?

    Что называется напряженностью магнитного поля? Какова ее связь с магнитной индукцией?

    Сформулировать закон Био-Савара-Лапласа, вычислить на его основе ин­дукцию магнитного поля в центре кругового тока, индукцию поля прямого тока и соленоида.

    Как определяется направление индукции магнитного поля прямого и круго­вого токов?

    В чем заключается принцип суперпозиции магнитных полей?

    Какое поле называют вихревым?

    Сформулируйте закон Ампера.

    Расскажите об основных параметрах магнитного поля Земли.

    Каким образом можно определить направление силовых линий магнитного поля Земли?

    Почему измерение горизонтальной составляющей индукции магнитного по­ ля выгоднее проводить при угле отклонения стрелки в 45°?

ЛАБОРАТОРНАЯ РАБОТА №7

Если есть прямой проводник с током, то обнаружить наличие магнитного поля вокруг этого проводника можно с помощью железных опилок...

Или магнитных стрелок.

Под действием магнитного поля тока магнитные стрелки или железные опилки располагаются по концентрическим окружностям.


Магнитные линии

Магнитное поле можно изобразить графически с помощью магнитных линий.
Магнитные линии магнитного поля тока – это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок.
Магнитные линии магнитного поля тока – это замкнутые кривые, охватывающие проводник.
У прямого проводника с током - это концентрические расширяющиеся окружности.
За направление магнитной линии принято направление, которое указывает северный полюс магнитной стрелки в каждой точке поля.

Графическое изображение магнитного поля прямого проводника с током.

Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике


Интересно видеть, как железные опилки, притянувшись к полюсу магнита образуют кисти, отталкивающиеся друг от друга. А ведь они всего-навсего располагаются вдоль силовых линий магнитного поля!
___

А можете ли вы нарисовать картину магнитные линии магнитного поля проводника с током, свернутого в виде восьмерки?
Этот рисунок похож на тот, что представил себе ты?

МОЖНО ЛИ УВИДЕТЬ МАГНИТНОЕ ПОЛЕ

Надо включить цветной телевизор на какой- нибудь неподвижный кадр и поднести к нему магнит. Цвета изображения на экране вблизи магнита изменятся!
Картинка будет сиять радужными разводами. Цветные полосы сгущаются вблизи контура магнита как бы визуализируя магнитное полеВ Англии он применялся в толченом виде как слабительное Интересно при этом вращать магнит, сдвигать его или приближать и удалять от экрана.
Картина магнитного поля будет куда интересней, чем в опытах с опилками!


К небольшому латунному диску свободно подвесили несколько стальных иголок.

Если снизу к иголкам медленно подносить магнит (например, южным полюсом), то сначала иголки разойдутся, а затем, когда магнит приблизится совсем вплотную, снова вернутся в вертикальное положение.
Почему?


ОПЫТЫ С ЖЕЛЕЗНЫМИ ОПИЛКАМИ

Возьмите магнит любой формы, накройте его куском тонкого картона, посыпьте сверху железными опилками и разровняйте их.
Так интересно наблюдать магнитные поля!
Ведь каждая «опилочка», словно магнитная стрелка, располагается вдоль магнитных линий.
Таким образом становятся «видимыми» магнитные линии магнитного поля вашего магнита.
При передвижении картона над магнитом (или наоборот магнита под картоном) опилки начинают шевелиться, меняя узоры магнитного поля.

Поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами . Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему , то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по "правилу буравчика" Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I , синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r :

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ 0 – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ 0 = 4 × π × 10 -7 (генри/метр);

генри (гн ) – единица индуктивности; 1 гн = 1 ом × сек .

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб ):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс ):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ 0 называется напряженностью магнитного поля и обозначается буквой H :

B = H × µ × µ 0 .

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H :

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр ):

1 эр = 79,6 а /м ≈ 80 а /м ≈ 0,8 а /см .

Напряженность магнитного поля H , как и магнитная индукция B , является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией .

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Ф = B × S .

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс ):

1 вб = 108 мкс .
1 мкс = 1 гс × 1 см 2.

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

Магнитное поле проводника с током. При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 38). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику. Направление магнитных силовых линий можно определить по правилу буравчика. Его формулируют следующим образом. Если поступательное движение буравчика 1 (рис. 39, а) совместить с направлением тока 2 в проводнике 3, то вращение его рукоятки укажет направление силовых линий 4 магнитного поля вокруг проводника. Например, если ток проходит по проводнику в направлении от нас за плоскость листа книги (рис. 39, б), то магнитное поле, возникающее вокруг этого проводника, направлено по часовой стрелке. Если ток по проводнику проходит по направлению от плоскости листа книги к нам, то магнитное поле вокруг проводника направлено против часовой стрелки. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля и его напряженность уменьшаются. Напряженность магнитного поля в пространстве, окружающем проводник,

H = I/(2?r) (44)

Максимальная напряженность Н max имеет место на внешней поверхности проводника 1 (рис. 40). Внутри проводника также

возникает магнитное поле, но напряженность его линейно уменьшается по направлению от внешней поверхности к оси (кривая 2). Магнитная индукция поля вокруг и внутри проводника изменяется таким же образом, как и напряженность.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют обмоткой, или катушкой.
При проводнике, согнутом в виде витка (рис. 41, а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 41, б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки. Магнитное поле катушки, обтекаемой током, имеет такую же форму, как и поле прямолинейного постоянного магнита (см. рис. 35, а): силовые магнитные линии выходят из одного конца катушки и входят В другой ее конец. Поэтому катушка, обтекаемая током, представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.
Электромагниты нашли чрезвычайно широкое применение в технике. Они создают магнитное поле, необходимое для работы электрических машин, а также электродинамические усилия, требуемые. Для работы различных электроизмерительных приборов и электрических аппаратов.
Электромагниты могут иметь разомкнутый или замкнутый магнитопровод (рис. 42). Полярность конца катушки электромагнита можно определить, как и полярность постоянного магнита, при помощи магнитной стрелки. К северному полюсу она поворачивается южным концом. Для определения направления магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика. Если совместить направление вращения рукоятки с направлением тока в витке или катушке, то поступательное движение буравчика укажет направление магнитного поля. Полярность электромагнита можно определить и с помощью правой руки. Для этого руку надо положить ладонью на катушку (рис. 43) и совместить четыре пальца с направлением в ней тока, при этом отогнутый большой палец покажет направление магнитного поля.