H2s слабый электролит. К сильным электролитам относится кислота. Растворы и растворимость

Константа гидролиза равна отношению произведения концентраций
продуктов гидролиза к концентрации негидролизованной соли.

Пример 1. Вычислить степень гидролиза NH 4 Cl.

Решение: Из таблицы находим Кд(NH 4 ОН)=1,8∙10 -3 , отсюда

Кγ=Кв/Кд к = =10 -14 /1,8∙10 -3 = 5,56∙10 -10 .

Пример 2. Вычислить степень гидролиза ZnCl 2 по 1 ступени в 0,5 М растворе.

Решение: Ионное уравнение гидролиза Zn 2 + H 2 O ZnOH + + H +

Kд ZnOH +1=1,5∙10 -9 ; hγ=√(Кв/ [Кд осн ∙Cм]) = 10 -14 /1,5∙10 -9 ∙0,5=0,36∙10 -2 (0,36%).

Пример 3. Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей: a) KCN; б) Na 2 CO 3 ; в) ZnSO 4 . Определите реакцию среды растворов этих солей.

Решение: а) Цианид калия KCN - соль слабой одноосновной кислоты (см. табл. I приложения) HCN и сильного основания КОН. При растворении в воде молекулы KCN полностью диссоциируют на катионы К + и анионы CN - . Катионы К + не могут связывать ионы ОН - воды, так как КОН - сильный электролит. Анионы же CN - связывают ионы Н + воды, образуя молекулы слабого элекролита HCN. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

CN - + Н 2 О HCN + ОН -

или в молекулярной форме

KCN + Н 2 О HCN + КОН

В результате гидролиза в растворе появляется некоторый избыток ионов ОН - , поэтому раствор KCN имеет щелочную реакцию (рН > 7).

б) Карбонат натрия Na 2 CO 3 - соль слабой многоосновной кислоты и сильного основания. В этом случае анионы соли СО 3 2- , связывая водородные ионы воды, образуют анионы кислой соли НСО - 3 , а не молекулы Н 2 СО 3 , так как ионы НСО - 3 диссоциируют гораздо труднее, чем молекулы Н 2 СО 3 . В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

CO 2- 3 +H 2 O HCO - 3 +ОН -

или в молекулярной форме

Na 2 CO 3 + Н 2 О NaHCO 3 + NaOH

В растворе появляется избыток ионов ОН - , поэтому раствор Na 2 CO 3 имеет щелочную реакцию (рН > 7).

в) Сульфат цинка ZnSO 4 - соль слабого многокислотного основания Zn(OH) 2 и сильной кислоты H 2 SO 4 . В этом случае катионы Zn + связывают гидроксильные ионы воды, образуя катионы основной соли ZnOH + . Образование молекул Zn(OH) 2 не происходит, так как ионы ZnOН + диссоциируют гораздо труднее, чем молекулы Zn(OH) 2 . В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по катиону. Ионно-моле­кулярное уравнение гидролиза

Zn 2+ + Н 2 О ZnOН + + Н +

или в молекулярной форме

2ZnSO 4 + 2Н 2 О (ZnOH) 2 SO 4 + H 2 SO 4

В растворе появляется избыток ионов водорода, поэтому раствор ZnSO 4 имеет кислую реакцию (рН < 7).

Пример 4. Какие продукты образуются при смешивании растворов A1(NO 3) 3 и К 2 СО 3 ? Составьте ионно-молекулярное и молекулярное уравнение реакции.

Решение. Соль A1(NO 3) 3 гидролизуется по катиону, а К 2 СО 3 - по аниону:

А1 3+ + Н 2 О А1ОН 2+ + Н +

СО 2- 3 + Н 2 О НСО - з + ОН -

Если растворы этих солей находятся в одном сосуде, то идет взаимное усиление гидролиза каждой из них, ибо ионы Н + и ОН - образуют молекулу слабого электролита Н 2 О. При этом гидро­литическое равновесие сдвигается вправо и гидролиз каждой из взятых солей идет до конца с образованием А1(ОН) 3 и СО 2 (Н 2 СО 3). Ионно-молекулярное уравнение:

2А1 3+ + ЗСО 2- 3 + ЗН 2 О = 2А1(ОН) 3 + ЗСО 2

молекулярное уравнение: ЗСО 2 + 6KNO 3

2A1(NO 3) 3 + ЗК 2 СО 3 + ЗН 2 О = 2А1(ОН) 3

Соли, их свойства, гидролиз

Ученица 8 класс Б школы № 182

Петрова Полина

Учитель химии:

Харина Екатерина Алексеевна

МОСКВА 2009

В быту мы привыкли иметь дело лишь с одной солью – поваренной, т.е. хлоридом натрия NaCl. Однако в химии солями называют целый класс соединений. Соли можно рассматривать как продукты замещения водорода в кислоте на металл. Поваренную соль, например, можно получить из соляной кислоты по реакции замещения:

2Na + 2HCl = 2NaCl + H 2 .

кислота соль

Если вместо натрия взять алюминий, образуется другая соль – хлорид алюминия:

2Al + 6HCl = 2AlCl 3 + 3H 2

Соли – это сложные вещества, состоящие из атомов металлов и кислотных остатков. Они являются продуктами полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток. Например, если в серной кислоте H 2 SO 4 заместить на калий один атом водорода, получим соль KHSO 4 , а если два – K 2 SO 4 .

Различают несколько типов солей.

Типы солей Определение Примеры солей
Средние Продукт полного замещения водорода кислоты на металл. Ни атомов Н, ни ОН-групп не содержат. Na 2 SO 4 сульфат натрия CuCl 2 хлорид меди (II) Ca 3 (PO 4) 2 фосфат кальция Na 2 CO 3 карбонат натрия (кальцинированная сода)
Кислые Продукт неполного замещения водорода кислоты на металл. Содержат в своем составе атомы водорода. (Они образованны только многоосновными кислотами) CaHPO 4 гидрофосфат кальция Ca(H 2 PO 4) 2 дигидрофосфат кальция NaHCO 3 гидрокарбонат натрия (питьевая сода)
Основные Продукт неполного замещения гидроксогрупп основания на кислотный остаток. Включают ОН-группы. (Образованны только многокислотными основаниями) Cu(OH)Cl гидроксохлорид меди (II) Ca 5 (PO 4) 3 (OH) гидроксофосфат кальция (CuOH) 2 CO 3 гидроксокарбонат меди (II) (малахит)
Смешанные Соли двух кислот Ca(OCl)Cl – хлорная известь
Двойные Соли двух металлов K 2 NaPO 4 – ортофосфат дикалия-натрия
Кристаллогидраты Содержат кристаллизационную воду. При нагревании они обезвоживаются – теряют воду, превращаясь в безводную соль. CuSO 4 . 5H 2 O – пятиводный сульфат меди(II) (медный купорос) Na 2 CO 3 . 10H 2 O – десятиводный карбонат натрия (сода)

Способы получения солей.



1. Соли можно получить, действуя кислотами на металлы, основные оксиды и основания:

Zn + 2HCl ZnCl 2 + H 2

хлорид цинка

3H 2 SO 4 + Fe 2 O 3 Fe 2 (SO 4) 3 + 3H 2 O

сульфат железа (III)

3HNO 3 + Cr(OH) 3 Cr(NO 3) 3 + 3H 2 O

нитрат хрома (III)

2. Соли образуются при реакции кислотных оксидов со щелочами, а также кислотных оксидов с основными оксидами:

N 2 O 5 + Ca(OH) 2 Ca(NO 3) 2 + H 2 O

нитрат кальция

SiO 2 + CaO CaSiO 3

силикат кальция

3. Соли можно получить при взаимодействии солей с кислотами, щелочами, металлами, нелетучими кислотными оксидами и другими солями. Такие реакции протекают при условии выделения газа, выпадения осадка, выделения оксида более слабой кислоты или выделения летучего оксида.

Ca 3 (PO4) 2 + 3H 2 SO 4 3CaSO 4 + 2H 3 PO 4

ортофосфат кальция сульфат кальция

Fe 2 (SO 4) 3 + 6NaOH 2Fe(OH) 3 + 3Na 2 SO 4

сульфат железа (III) сульфат натрия

CuSO 4 + Fe FeSO 4 + Cu

сульфат меди (II) сульфат железа (II)

CaCO 3 + SiO 2 CaSiO 3 + CO 2

карбонат кальция силикат кальция

Al 2 (SO 4) 3 + 3BaCl 2 3BaSO 4 + 2AlCl 3

сульфат хлорид сульфат хлорид

алюминия бария бария алюминия

4. Соли бескислородных кислот образуются при взаимодействии металлов с неметаллами:

2Fe + 3Cl 2 2FeCl 3

хлорид железа (III)

Физические свойства.

Соли – твердые вещества различного цвета. Растворимость в воде их различна. Растворимы все соли азотной и уксусной кислот, а также соли натрия и калия. О растворимости в воде других солей можно узнать из таблицы растворимости.

Химические свойства.

1) Соли реагируют с металлами.

Так как эти реакции протекают в водных растворах, то для опытов нельзя применять Li, Na, K, Ca, Ba и другие активные металлы, которые при обычных условиях реагируют с водой, либо проводить реакции в расплаве.

CuSO 4 + Zn ZnSO 4 + Cu

Pb(NO 3) 2 + Zn Zn(NO 3) 2 + Pb

2) Соли реагируют с кислотами. Эти реакции протекают, когда более сильная кислота вытесняет более слабую, при этом выделяется газ или выпадает осадок.

При проведении этих реакций обычно берут сухую соль и действуют концентрированной кислотой.

BaCl 2 + H 2 SO 4 BaSO 4 + 2HCl

Na 2 SiO 3 + 2HCl 2NaCl + H 2 SiO 3

3) Соли реагируют со щелочами в водных растворах.

Это способ получения нерастворимых оснований и щелочей.

FeCl 3 (p-p) + 3NaOH(p-p) Fe(OH) 3 + 3NaCl

CuSO 4 (p-p) + 2NaOH (p-p) Na 2 SO 4 + Cu(OH) 2

Na 2 SO 4 + Ba(OH) 2 BaSO 4 + 2NaOH

4) Соли реагируют с солями.

Реакции протекают в растворах и используются для получения практически нерастворимых солей.

AgNO 3 + KBr AgBr + KNO 3

CaCl 2 + Na 2 CO 3 CaCO 3 + 2NaCl

5) Некоторые соли при нагревании разлагаются.

Характерным примером такой реакции является обжиг известняка, основной составной частью которого является карбонат кальция:

CaCO 3 CaO + CO2 карбонат кальция

1. Некоторые соли способны кристаллизироваться с образованием кристаллогидратов.

Сульфат меди (II) CuSO 4 – кристаллическое вещество белого цвета. При его растворении в воде происходит разогревание и образуется раствор голубого цвета. Выделение теплоты и изменение цвета – это признаки химической реакции. При выпаривании раствора выделяется кристаллогидрат CuSO 4 . 5H 2 O (медный купорос) . Образование этого вещества свидетельствует о том, что сульфат меди (II) реагирует с водой:

CuSO 4 + 5H 2 O CuSO 4 . 5H 2 O + Q

белого цвета сине-голубого цвета

Применение солей.

Большинство солей широко используется в промышленности и в быту. Например, хлорид натрия NaCl, или поваренная соль, незаменим в приготовлении пищи. В промышленности хлорид натрия используется для получения гидроксида натрия, соды NaHCO 3 , хлора, натрия. Соли азотной и ортофосфорной кислот в основном являются минеральными удобрениями. Например, нитрат калия KNO 3 – калийная селитра. Она также входит в состав пороха и других пиротехнических смесей. Соли применяются для получения металлов, кислот, в производстве стекла. Многие средства защиты растений от болезней, вредителей, некоторые лекарственные вещества также относятся к классу солей. Перманганат калия KMnO 4 часто называют марганцовкой. В качестве строительного материала используются известняки и гипс – CaSO 4 . 2H 2 O, который также применяется в медицине.

Растворы и растворимость.

Как уже указывалось ранее, растворимость является важным свойством солей. Растворимость - способность вещества образовывать с другим веществом однородную, устойчивую систему переменного состава, состоящую из двух или большего числа компонентов.

Растворы – это однородные системы, состоящие из молекул растворителя и частиц растворенного вещества.

Так, например, раствор поваренной соли состоит из растворителя – воды, растворенного вещества – ионов Na + ,Cl - .

Ионы (от греч. ión - идущий), электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Понятие и термин «ион» ввёл в 1834 М. Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), - анионами.

По степени растворимости в воде вещества делятся на три группы:

1) Хорошо растворимые;

2) Малорастворимые;

3) Практически нерастворимые.

Многие соли хорошо растворимы в воде. При решении вопроса о растворимости в воде других солей придется пользоваться таблицей растворимости.

Хорошо известно, что одни вещества в растворенном или расплавленном виде проводят электрический ток, другие в тех же условиях ток не проводят.

Вещества, распадающиеся на ионы в растворах или расплавах и поэтому проводящие электрический ток, называют электролитами .

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами .

К электролитам относятся кислоты, основания и почти все соли. Сами электролиты электрический ток не проводят. В растворах и расплавах они распадаются на ионы, благодаря чему и протекает ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией . Ее содержание сводится к трем следующим положениям:

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2) Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду и называются – катионы, а отрицательно заряженные ионы движутся к аноду и называются – анионами.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация).

обратимость

Сильные и слабые электролиты.

Для количественной характеристики способности электролита распадаться на ионы введено понятие степени диссоциации (α), т. Е. Отношения числа молекул, распавшихся на ионы, кобщему числу молекул. Например, α = 1 говорит о том, что электролит полностью распался на ионы, а α = 0,2 означает, что продиссоциировала лишь каждая пятая из его молекул. При разбавлении концентрированного раствора, а также при нагревании его электропроводность повышается, так как возрастает степень диссоциации.

В зависимости от величины α электролиты условно делятся на сильные (диссоциируют практически нацело, (α 0,95) средней силы (0,95

Сильными электролитами являются многие минеральные кислоты (HCl, HBr, HI, H 2 SO 4 , HNO 3 и др.), щелочи (NaOH, KOH, Ca(OH) 2 и др.), почти все соли. К слабым принадлежат растворы некоторых минеральных кислот (H 2 S, H 2 SO 3 , H 2 CO 3 , HCN, HClO), многие органические кислоты (например, уксусная CH 3 COOH), водный раствор аммиака (NH 3 . 2 O), вода, некоторые соли ртути (HgCl 2). К электролитам средней силы часто относят плавиковую HF, ортофосфорную H 3 PO 4 и азотистую HNO 2 кислоты.

Гидролиз солей.

Термин « гидролиз » произошел от греческих слов hidor (вода) и lysis (разложение). Под гидролизом обычно понимают обменную реакцию между веществом и водой. Гидролитические процессы чрезвычайно распространены в окружающей нас природе (как живой, так и неживой), а также широко используются человеком в современных производственных и бытовых технологиях.

Гидролизом соли называется реакция взаимодействия ионов, входящих в состав соли, с водой, которая приводит к образованию слабого электролита и сопровождается изменением среды раствора.

Гидролизу подвергаются три типа солей:

а) соли, образованные слабым основанием и сильной кислотой (CuCl 2 , NH 4 Cl, Fe 2 (SO 4) 3 - протекает гидролиз по катиону)

NH 4 + + H 2 O NH 3 + H 3 O +

NH 4 Cl + H 2 O NH 3 . H 2 O + HCl

Реакция среды – кислая.

б) соли, образованные сильным основанием и слабой кислотой (К 2 CO 3 , Na 2 S - протекает гидролиз по аниону)

SiO 3 2- + 2H 2 O H 2 SiO 3 + 2OH -

K 2 SiO 3 +2H 2 O H 2 SiO 3 +2KOH

Реакция среды – щелочная.

в) соли, образованные слабым основанием и слабой кислотой (NH 4) 2 CO 3 , Fe 2 (CO 3) 3 – протекает гидролиз по катиону и по аниону.

2NH 4 + + CO 3 2- + 2H 2 O 2NH 3 . H 2 O + H 2 CO 3

(NH 4) 2 CO 3 + H 2 O 2NH 3 . H 2 O + H 2 CO 3

Часто реакция среды – нейтральная.

г) соли образованные сильным основанием и сильной кислотой (NaCl, Ba(NO 3) 2) гидролизу не подвержены.

В ряде случаев гидролиз протекает необратимо (как говорят, идет до конца). Так при смешении растворов карбоната натрия и сульфата меди выпадает голубой осадок гидратированной основной соли, которая при нагревании теряет часть кристаллизационной воды и приобретает зеленый цвет – превращается в безводный основный карбонат меди – малахит:

2CuSO 4 + 2Na 2 CO 3 + H 2 O (CuOH) 2 CO 3 + 2Na 2 SO 4 + CO 2

При смешении растворов сульфида натрия и хлорида алюминия гидролиз также идет до конца:

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl

Поэтому Al 2 S 3 нельзя выделить из водного раствора. Эту соль получают из простых веществ.

ЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых проводят электрический ток.

НЕЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых не проводят электрический ток.

Диссоциация – распад соединений на ионы.

Степень диссоциации – отношение числа продиссоциированных на ионы молекул к общему числу молекул в растворе.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы.

При написании уравнений диссоциации сильных электролитов ставят знак равенства.

К сильным электролитам относятся:

· Растворимые соли (смотри таблицу растворимости );

· Многие неорганические кислоты: HNO 3 , H 2 SO 4 ,HClO 3 , HClO 4 , HMnO 4 , HCl, HBr, HI (смотри кислоты-сильные электролиты в таблице растворимости );

· Основания щелочных (LiOH, NaOH,KOH) и щелочноземельных (Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2) металлов (смотри основания-сильные электролиты в таблице растворимости ).

СЛАБЫЕ ЭЛЕКТРОЛИТЫ в водных растворах лишь частично (обратимо) диссоциируют на ионы.

При написании уравнений диссоциации слабых электролитов ставят знак обратимости.

К слабым электролитам относятся:

· Почти все органические кислоты и вода (Н 2 О);

· Некоторые неорганические кислоты: H 2 S, H 3 PO 4 ,HClO 4 , H 2 CO 3 , HNO 2 , H 2 SiO 3 (смотри кислоты-слабые электролиты в таблице растворимости );

· Нерастворимые гидроксиды металлов (Mg(OH) 2 ,Fe(OH) 2 , Zn(OH) 2) (смотри основания- c лабые электролиты в таблице растворимости ).

На степень электролитической диссоциации влияет ряд факторов:

    природа растворителя и электролита : сильными электролитами являются вещества с ионными и ковалентными сильно-полярными связями; хорошей ионизирующей способностью, т.е. способностью вызывать диссоциацию веществ, обладают растворители с большой диэлектрической проницаемостью, молекулы которых полярны (например, вода);

    температура : поскольку диссоциация - процесс эндотермический, повышение температуры повышает значение α;

    концентрация : при разбавлении раствора степень диссоциации возрастает, а с увеличением концентрации - уменьшается;

    стадия процесса диссоциации : каждая последующая стадия менее эффективна, чем предыдущая, примерно в 1000–10 000 раз; например, для фосфорной кислоты α 1 > α 2 > α 3:

H3PО4⇄Н++H2PО−4 (первая стадия, α 1),

H2PО−4⇄Н++HPО2−4 (вторая стадия, α 2),

НPО2−4⇄Н++PО3−4 (третья стадия, α 3).

По этой причине в растворе данной кислоты концентрация ионов водорода наибольшая, а фосфат-ионов РО3−4 - наименьшая.

1. Растворимость и степень диссоциации вещества между собой не связаны. Например, слабым электролитом является хорошо (неограниченно) растворимая в воде уксусная кислота.

2. В растворе слабого электролита меньше других содержится тех ионов, которые образуются на последней стадии электролитической диссоциации

На степень электролитической диссоциации влияет также добавление других электролитов : например, степень диссоциации муравьиной кислоты

HCOOH ⇄ HCOO − + H +

уменьшается, если в раствор внести немного формиата натрия. Эта соль диссоциирует с образованием формиат-ионов HCOO − :

HCOONa → HCOO − + Na +

В результате в растворе концентрация ионов НСОО– повышается, а согласно принципу Ле Шателье, повышение концентрации формиат-ионов смещает равновесие процесса диссоциации муравьиной кислоты влево, т.е. степень диссоциации уменьшается.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь - константа диссоциации электролита, - концентрация, и - значения эквивалентной электропроводности при концентрации и при бесконечном разбавлении соответственно. Соотношение является следствием закона действующих масс и равенства

где - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 году и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Электролитическая диссоциация воды. Водородный показатель рН Вода представляет собой слабый амфотерный электролит: Н2О Н+ + ОН- или, более точно: 2Н2О= Н3О+ + ОН- Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л =55,55 моль/л). Тогда Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW: Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13. В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой: = = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды. На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями. Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода: рН = - lg Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила: рОН = - lg Легко показать, прологарифмировав ионное произведение воды, что рН + рОН = 14 Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

Электрический ток – направленное движение заряженных частиц – электронов или ионов.
Электролиты – это вещества, растворы или расплавы (в ЕГЭ чаще речь о растворах) которых проводят электрический ток, то есть содержат заряженные частицы. Свободных электронов в растворе не бывает, носителями заряда являются ионы. Электрический ток проводят расплавы веществ с ионной кристаллической решеткой.

К электролитам относятся:

  • Кислоты
  • Основания

Чем больше в растворе заряженных частиц, тем лучше он проводит электрический ток, т.е. чем больше молекул вещества диссоциирует, тем более сильным электролитом оно является.

Список сильных и слабых электролитов нужно знать наизусть!

Сильные электролиты (в растворах): 11

  • Растворимые соли

FeCl 3 , CuSO 4 , K 2 CO 3 и т.д.

  • Щелочи

8 растворимых гидроксидов: LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH) 2 , Sr(OH) 2 , Ca(OH) 2 .

  • Сильные кислоты

HI, HBr, HCl, H 2 SO 4(разб) , HNO 3 , HClO 4 , HClO 3 , HMnO 4 , H 2 CrO 4

Слабые электролиты:

  • Слабые основания

нерастворимые гидроксиды, NH 3 ∙H 2 O, растворы аминов

  • Слабые кислоты и кислоты средней силы

H 3 PO 4 , HF, H 2 SO 3 , H 2 CO 3 , H 2 S, H 2 SiO 3 , органические кислоты.

  • Вода

H 2 O – очень слабый электролит, диссоциирует ничтожно мало. Чистая дистиллированная вода не проводит ток.

Неэлектролиты: большинство органических соединений, оксиды, вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи и т.д.

Сила электролита определяется степенью диссоциации. Рассмотрим соль А 2 В и кислоту Н 3 Х:

Диссоциация - всегда обратимый процесс.

Соли диссоциируют (обратимо распадаются на ионы) почти на 100%:

А 2 В ⇄ 2А + + В 2- . Так как все молекулы распались на ионы, из 1 моль АВ получилось 1 моль В 2- и 2 моль А + , то есть три моль ионов.

Многоосновные кислоты и основания диссоциируют ступенчато:

Н 3 Х ⇄ H + + H 2 X -

H 2 X - ⇄ HX 2- + H +

HX 2- ⇄X 3- + H +

При этом каждая следующая ступень диссоциации протекает хуже предыдущей, т.к. присутсвует конкурирующий процесс - обратная реакция. Порядок примерно такой: Из 1 моль молекул слабой кислоты по первой ступени диссоциировало 0,05 моль, по второй - 0,0002 моль и по третьей – 0,00000001 моль. Итого образовалось чуть больше 0,1 моль ионов.

Очевидно, этот раствор этой кислоты проводит ток хуже, чем раствор соли.

Пара вопросов для тренировки:

1) Какие частицы образутся при диссоциации нитрата натрия

а) Na + , N +5 , O -2 ; б) Na + , NO 3 - в) Na, NO 2 , O 2 г) NaNO 2 , O 2

Решение: нитрат натрия образован остатком азотной кислоты и катионом натрия. Уравнение его диссоциации: NaNO3 ⇄ Na + + NO 3 - . Ответ б).

2) В четырех пробирках находятся одномолярные растворы следующих веществ:

а) H 3 PO 4 б) Na 2 SO 4 в) NaCl г) HBr

В какой пробирке больше всего ионов?

Решение: a) ортофосфорная кислота – средней силы, диссоциирует слабо, большая часть молекул останутся в растворе молекулами.

б) сульфат натрия – соль, диссоциирует полностью, из одного моль соли олучается три моль ионов: Na 2 SO 4 ⇄ 2Na + + SO 4 2- .

в) хлорид натрия – соль, диссоциирует полностью, из одного моль соли образуется два моль ионов: NaCl ⇄ Na + + Cl - .

г) бромоводородная кислота – сильная, но диссоциирует не полностью (в отличие от солей). В реакции HBr ⇄ H+ + Br- из одного моль HBr образуется меньше двух моль ионов.

Как отличать сильные электролиты от слабых? и получил лучший ответ

Ответ от Павел Бескровный[мастер]
СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов ЗНАЧЕНИЕ СТЕПЕНИ диссоциации стремится К ЕДИНИЦЕ в разбавленных растворах.
К сильным электролитам относят:
1) практически все соли;
2) сильные кислоты, например: H2SO4 (серная к-та) , HCl (соляная к-та) , HNO3 (азотная к-та) ;
3) все щёлочи, например: NaOH (гидроксид натрия) , KOH (гидроксид калия) .
СЛАБЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде почти не диссоциируют на ионы. У таких электролитов ЗНАЧЕНИЕ СТЕПЕНИ диссоциации стремится К НУЛЮ.
К слабым электролитам относят:
1) слабые кислоты - H2S (сероводородная к-та) , H2CO3 (угольная к-та) , HNO2;
2) водный раствор аммиака NH3 * H2O
СТЕПЕНЬ ДИССОЦИАЦИИ - это отношение числа частиц, распавшихся на ионы (Nд) , к общему числу растворённых частиц (Nр) , (обозначается греческой буквой альфа) :
a= Nд / Nр. Электролитическая диссоциация - процесс обратимый для слабых электролитов. Электролиты надеюсь знаешь, что такое, раз спрашиваешь. Это по-проще, если по-сложней, то смотри выше (по ряду ЭО) .
Электролитическая диссоциация - процесс обратимый для слабых электролитов.
Если есть вопросы, то шли на мыло.