Распределение пуассона и его характеристики. Распределение Пуассона. Закон редких событий. Числовые характеристики случайной величины Х

Рассмотрим распределение Пуассона, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL ПУАССОН.РАСП() построим графики функции распределения и плотности вероятности. Произведем оценку параметра распределения, его математического ожидания и стандартного отклонения.

Сначала дадим сухое формальное определение распределения, затем приведем примеры ситуаций, когда распределение Пуассона (англ. Poisson distribution ) является адекватной моделью для описания случайной величины.

Если случайные события происходят в заданный период времени (или в определенном объеме вещества) со средней частотой λ(лямбда ), то число событий x , произошедших за этот период времени, будет иметь распределение Пуассона .

Применение распределения Пуассона

Примеры, когда Распределение Пуассона является адекватной моделью:

  • число вызовов, поступивших на телефонную станцию за определенный период времени;
  • число частиц, подвергнувшихся радиоактивному распаду за определенный период времени;
  • число дефектов в куске ткани фиксированной длины.

Распределение Пуассона является адекватной моделью, если выполняются следующие условия:

  • события происходят независимо друг от друга, т.е. вероятность последующего события не зависит от предыдущего;
  • средняя частота событий постоянна. Как следствие, вероятность события пропорциональна длине интервала наблюдения;
  • два события не могут произойти одновременно;
  • число событий должно принимать значения 0; 1; 2…

Примечание : Хорошей подсказкой, что наблюдаемая случайная величина имеет распределение Пуассона, является тот факт, что приблизительно равно (см. ниже).

Ниже представлены примеры ситуаций, когда Распределение Пуассона не может быть применено:

  • число студентов, которые выходят из университета в течение часа (т.к. средний поток студентов не постоянен: во время занятий студентов мало, а в перерыве между занятиями число студентов резко возрастает);
  • число землетрясений амплитудой 5 баллов в год в Калифорнии (т.к. одно землетрясение может вызвать повторные толчки сходной амплитуды – события не независимы);
  • число дней, которые пациенты проводят в отделении интенсивной терапии (т.к. число дней, которое пациенты проводят в отделении интенсивной терапии всегда больше 0).

Примечание : Распределение Пуассона является приближением более точных дискретных распределений: и .

Примечание : О взаимосвязи распределения Пуассона и Биномиального распределения можно прочитать в статье . О взаимосвязи распределения Пуассона и Экспоненциального распределения можно прочитать в статье про .

Распределение Пуассона в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Распределения Пуассона имеется функция ПУАССОН.РАСП() , английское название - POISSON.DIST(), которая позволяет вычислить не только вероятность того, что за заданный период времени произойдет х событий (функцию плотности вероятности p(x), см. формулу выше), но и (вероятность того, что за заданный период времени произойдет не меньше x событий).

До MS EXCEL 2010 в EXCEL была функция ПУАССОН() , которая также позволяет вычислить функцию распределения и плотность вероятности p(x). ПУАССОН() оставлена в MS EXCEL 2010 для совместимости.

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Распределение Пуассона имеет скошенную форму (длинный хвост справа у функции вероятности), но при увеличении параметра λ становится все более симметричным.

Примечание : Среднее и дисперсия (квадрат ) равны параметру распределения Пуассона – λ (см. файл примера лист Пример ).

Задача

Типичным применением Распределения Пуассона в контроле качества является модель количества дефектов, которые могут появиться в приборе или устройстве.

Например, при среднем количестве дефектов в микросхеме λ (лямбда) равном 4, вероятность, что случайно выбранная микросхема будет иметь 2 или меньше дефектов, равна: =ПУАССОН.РАСП(2;4;ИСТИНА)=0,2381

Третий параметр в функции установлен = ИСТИНА, поэтому функция вернет интегральную функцию распределения , то есть вероятность того, что число случайных событий окажется в диапазоне от 0 до 4 включительно.

Вычисления в этом случае производятся по формуле:

Вероятность того, что случайно выбранная микросхема будет иметь ровно 2 дефекта, равна: =ПУАССОН.РАСП(2;4;ЛОЖЬ)=0,1465

Третий параметр в функции установлен = ЛОЖЬ, поэтому функция вернет плотность вероятности.

Вероятность того, что случайно выбранная микросхема будет иметь больше 2-х дефектов, равна: =1-ПУАССОН.РАСП(2;4;ИСТИНА) =0,8535

Примечание : Если x не является целым числом, то при вычислении формулы . Формулы =ПУАССОН.РАСП(2 ; 4; ЛОЖЬ) и =ПУАССОН.РАСП(2,9 ; 4; ЛОЖЬ) вернут одинаковый результат.

Генерация случайных чисел и оценка λ

При значениях λ>15 , Распределение Пуассона хорошо аппроксимируется Нормальным распределением со следующими параметрами: μ, σ 2 .

Подробнее о связи этих распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

$Х$ имеет распределение Пуассона с параметром $\lambda$ ($\lambda$$>$0), если эта величина принимает целые неотрицательные значения $к=0, 1, 2,\dots$ с вероятностями $рк$=$\frac{\lambda ^{:} }{:!} \cdot 5^{-\lambda } .$ (Это распределение впервые было рассмотрено французским математиком и физиком Симеоном Дени Пуассоном в 1837 г.)

Распределение Пуассона также называют законом редких событий, потому, что вероятности рк дают приближенное распределение числа наступлений некоторого редкого события при большом количестве независимых испытаний. В этом случае полагают $\lambda =n \cdot р$ , где $n$- число испытаний Бернулли, $р$- вероятность осуществления события в одном испытании.

Правомерность использования закона Пуассона вместо биномиального распределения при большом числе испытаний дает следующая теорема.

Теорема 1

Теорема Пуассона.

Если в схеме Бернулли n$\rightarrow$$\infty$, p$\rightarrow$0, так что $n \cdot p$$\rightarrow$$\lambda$ (конечному числу), то

$!_{n}^{k} p^{k} (1-p)^{n-k} \to \frac{\lambda ^{k} }{k!} e^{-\lambda } $ при любых $k=0, 1, 2,... $

Без доказательства.

Примечание 1

Формула Пуассона становится точнее, при малениких $p$ и больших чисел $n$, причём $n \cdot p $

Математическое ожидание случайной величины, имеющей распределение Пуассона с параметром $\lambda$:

$М(Х)$=$\sum \limits _{k=0}^{\infty }k\cdot \frac{\lambda ^{k} }{k!} e^{-\lambda } =\lambda \cdot e^{-\lambda } \sum \limits _{k=1}^{\infty }\frac{\lambda ^{k} }{k!} =\lambda \cdot e^{-\lambda } \cdot e^{\lambda } = $$\lambda$.

Дисперсия случайной величины, имеющей распределение Пуассона параметром $\lambda$:

$D(X)$=$\lambda$ .

Применение формулы Пуассона при решении задач

Пример 1

Вероятность появления бракованного изделия при массовом производстве равна $0,002$. Найти вероятность того, что в партии из $1500$ изделий будет не более 3-х бракованных. Найти среднее число бракованных изделий.

  • Пусть $А$-число бракованных изделий в партии из $1500$ изделий. Тогда искомая вероятность, это вероятность того, что $А$ $\leq$ $3$. В данной задаче мы имеем схему Бернулли с $n=1500$ и $р=0,002$. Для применения теоремы Пуассона положим $\lambda=1500 \cdot 0,002=3$. Тогда искомая вероятность
\
  • Среднее число бракованных изделий $М(А)$=$\lambda$=3.

Пример 2

Коммутатор учреждения обслуживает $100$ абонентов. Вероятность того, что в течение $1$ минуты абонент позвонит, равна $0,01$. Найти вероятность того, что в течение $1$ минуты никто не позвонит.

Пусть $А$- число позвонивших на коммутатор в течение $1$ минуты. Тогда искомая вероятность -- это вероятность того, что $А=0$. В данной задаче применима схема Бернулли с $n=100$, $p=0,01$. Для использования теоремы Пуассона положим

$\lambda=100 \cdot 0,01=1$.

Тогда искомая вероятность

$Р = е^-1$ $\approx0,37$.

Пример 3

Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти вероятности того, что в пути будет повреждено

  1. ровно три изделия;
  2. менее трех изделий.

    Рассмотрев замечание к формуле Пуассона, поскольку вероятность $р=0,002$ повреждения изделия мала, а число изделий $n=500$ велико, и $a=n\cdot p=1

    Для решения второй задачи применима формула, где $k1=0$ и $k2=2$. Имеем:

\

Пример 4

Учебник издан тиражом $100000$ экземпляров. Вероятность того, что один учебник сброшюрован неправильно, равна $0,0001$. Какова вероятность того, что тираж содержит $5$ бракованных книг?

По условию задачи $n = 100000$, $p = 0,0001$.

События "из $n$ книг ровно $m$ книг сброшюрованы неправильно", где $m = 0,1,2, \dots ,100000$, являются независимыми. Так как число $n$ велико, а вероятность $p$ мала, вероятность $P_n (m)$ можно вычислить по формуле Пуассона: $P_n$(m)$\approx \frac{{\lambda }^m\cdot e^{-\lambda }}{m!}$ , где $\lambda = np$.

В рассматриваемой задаче

$\lambda = 100000 \cdot 0,0001 = 10$.

Поэтому искомая вероятность $P_{100000}$(5) определяется равенством:

$P_{100000}$ (5)$\approx \frac{e^{-10}\cdot {10}^5}{5!}\approx $ ${10}^5$ $\frac{0,000045}{120}$ = $0,0375$.

Ответ: $0,0375$.

Пример 5

Завод отправил на базу $5000$ доброкачественных изделий. Вероятность того, что в пути изделие повредиться равно $0,0002$. Найти вероятность того, что на базу прибудут три негодных изделия.

По условию $n=5000$; $р = 0,0002$; $k = 3$. Найдем $\lambda $:

$\lambda = n \cdot p = 5000 \cdot 0,0002 = 1$.

Искомая вероятность по формуле Пуассона равна:

Пример 6

Вероятность того, что на телефонную станцию в течение одного часа позвонит один абонент, равна 0,01. В течение часа позвонили 200 абонентов. Найти вероятность того, что в течение часа позвонят 3 абонента.

Рассматрев условие задачи видим, что:

Найдем $\lambda $ для формуллы Пуассона:

\[\lambda =np=200\cdot 0,01=2.\]

Подставим значения в формулу Пуассона и получим значение:

Пример 7

На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно для 2-х студентов?

Имеем $n=500$; $p=1/365 \approx 0,0027$, $q=0,9973$. Поскольку количество испытаний велико, а вероятность выполнения очень мала и $npq=1,35 \

Краткая теория

Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Для определения вероятности появлений события в этих испытаниях используют формулу Бернулли . Если же велико, то пользуются или . Однако эта формула непригодна, если мала. В этих случаях ( велико, мало) прибегают к асимптотической формуле Пуассона .

Поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно раз. Сделаем важное допущение: произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появления события в различных сериях испытаний, т.е. при различных значениях , остается неизменным.

Пример решения задачи

Задача 1

На базе получено 10000 электроламп. Вероятность того, что в пути лампа разобьется, равна 0,0003. Найдите вероятность того, что среди полученных ламп будет пять ламп разбито.

Решение

Условие применимости формулы Пуассона:

Если вероятность появления события в отдельном испытании достаточно близка к нулю, то даже при больших значениях количества испытаний вероятность, вычисляемая по локальной теореме Лапласа, оказывается недостаточно точной. В таких случаях используют формулу, выведенную Пуассоном.

Пусть событие – 5 ламп будет разбито

Воспользуемся формулой Пуассона:

В нашем случае:

Ответ

Задача 2

На предприятии 1000 единиц оборудования определенного вида. Вероятность отказа единицы оборудования в течение часа составляет 0,001. Составить закон распределения числа отказов оборудования в течение часа. Найти числовые характеристики.

Решение

Случайная величина – число отказов оборудования, может принимать значения

Воспользуемся законом Пуассона:

Найдем эти вероятности:

.

Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона равна параметру этого распределения:

На цену сильно влияет срочность решения (от суток до нескольких часов). Онлайн-помощь на экзамене/зачете осуществляется по предварительной записи.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Введение

Теория вероятностей – это математическая наука, изучающая закономерности в случайных явлениях. На сегодняшний день это полноценная наука, имеющая большое практическое значение.

История теории вероятности восходит к XVII веку, когда были предприняты первые попытки систематического исследования задач, относящихся к массовым случайным явлениям, и появился соответствующий математический аппарат. С тех пор, многие основы были разработаны и углублены до нынешних понятий, были открыты другие важные законы и закономерности. Множество ученых работало и работает над проблемами теории вероятностей.

Среди них нельзя не обратить внимание на труды Симеона Дени Пуассона ((1781–1840) – французский математик), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Число наступлений определённого случайного события за единицу времени, когда факт наступления этого события в данном эксперименте не зависят от того, сколько раз и в какие моменты времени оно осуществлялось в прошлом, и не влияет на будущее. А испытания производятся в стационарных условиях, то для описания распределения такой случайной величины обычно используют закон Пуассона (данное распределение впервые предложено и опубликовано этим учёным в 1837 г.).

Этот закон можно также описывать как предельный случай биноминального распределения, когда вероятность p осуществления интересующего нас события в единичном эксперименте очень мала, но число экспериментов m, производимых в единицу времени, достаточно велико, а именно такое, что в процессе p

0 и m произведение mp стремится к некоторой положительной постоянной величине (т.е. mp ).

Поэтому закон Пуассона часто называют также законом редких событий.


Распределение Пуассона в теории вероятностей

Функция и ряд распределения

Распределение Пуассона – это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)).

Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:

где a = n · p – параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения

P m = C n m · p m · (1 – p ) n m

может быть написан, если положить p = a /n , в виде

Так как p очень мало, то следует принимать во внимание только числа m , малые по сравнению с n . Произведение


весьма близко к единице. Это же относится к величине

очень близка к e a . Отсюда получаем формулу:

число Эйлера (2,71…). ,

Для производящей функции

величины имеем:

Интегральная функция вероятности распределения равна

Классическим примером случайной величины, распределенной по Пуассону, является количество машин, проезжающих через какой-либо участок дороги за заданный период времен. Также можно отметить такие примеры, как количество звезд на участке неба заданной величины, количество ошибок в тексте заданной длины, количество телефонных звонков в call-центре или количество обращений к веб-серверу за заданный период времени.

Ряд распределения случайной величины Х, распределенной по закону Пуассона, выглядит следующим образом:

х m 0 1 2 m
P m e -a

На рис. 1 представлены многоугольники распределения случайной величины Х по закону Пуассона, соответствующие различным значениям параметра а .

Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей Р m равна единице.


Используем разложение функции е х в ряд Маклорена:

Известно, что этот ряд сходится при любом значении х , поэтому, взяв х=а , получим

следовательно

Числовые характеристики положения о распределении Пуассона

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

По определению, когда дискретная случайная величина принимает счетное множество значений:

Первый член суммы (соответствующий m =0 ) равен нулю, следовательно, суммирование можно начинать с m =1 :


Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины Х .

Кроме математического ожидания, положение случайной величины характеризуется модой и медианой.

Модой случайной величины называется её наиболее вероятное значение.

Для непрерывной величины модой называется точкой локального максимума функции плотности распределения вероятностей. Если многоугольник или кривая распределения имеют один максимум (рис. 2 а), то распределение называется унимодальным, при наличии более одного максимума – мультимодальным (в частности, распределение, имеющее две моды, называется бимодальным). Распределение, имеющее минимум, называется антимодальным (рис. 2 б)

x mod x 0 x 1 x 2 x 3 x 4 x

Наивероятнейшим значением случайной величины называется мода, доставляющая глобальный максимум вероятности для дискретной случайной величины или плотности распределения для непрерывной случайной величины.

Медиана – это такое значение х l , которое делит площадь под графиком плотности вероятности пополам, т.е. медиана является любым корнем уравнения. Математическое ожидание может не существовать, а медиана существует всегда и может быть неоднозначно определенной.

Медианой случайной величины

называется такое её значение = x med , что P ( < x med) = Р ( > x med) = .

Числовые характеристики разброса

Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания.

Биномиальный закон распределения относится к случаям, когда была сделана выборка фиксированного объема. Распределение Пуассона относится к случаям, когда число случайных событий происходит на определенных длине, площади, объеме или времени, при этом определяющим параметром распределения является среднее число событийт , а не объем выборки п и вероятность успеха р. Например, количество несоответствий в выборке или количество несоответствий, приходящихся на единицу продукции.

Распределение вероятностей для числа успехов х имеет при этом следующий вид:

Или можно сказать, что дискретная случайная величина X распределена по закону Пуассона, если ее возможные значения 0,1, 2, ...т, ...п, а вероятность появления таких значений определяется соотношением:

где m или λ- некоторая положительная величина, называемая параметром распределения Пуассона.

Закон Пуассона распространяется на «редко» происходящие события, при этом возможность очередной удачи (например, сбоя) сохраняется непрерывно, является постоянной и не зависит от числа предыдущих удач или неудач (когда речь идет о процессах, развивающихся во времени, это называют «независимостью от прошлого»). Классическим примером, когда применим закон Пуассона, является число телефонных вызовов на телефонной станции в течение заданного интервала времени. Другими примерами могут быть число чернильных клякс на странице, неаккуратно написанной рукописи, или число соринок, оказавшихся на кузове автомобиля во время его окраски. Закон распределения Пуассона измеряет число дефектов, а не число бракованных изделий.

Распределению Пуассона подчиняется количество случайных событий, которые появляются в фиксированные промежутки времени или в фиксированной области пространства, При λ<1 значение P(m) монотонно убывает с ростом m то, a при λ> 1 значениеP(m)с ростом т проходит через максимум вблизи /

Особенностью распределения Пуассона является равенство дисперсии математическому ожиданию. Параметры распределения Пуассона

M(x) = σ 2 = λ (15)

Эта особенность распределения Пуассона позволяет на практике утверждать, что экспериментально полученное распределение случайной величины подчинено распределению Пуассона, если выборочные значения математического ожидания и дисперсии примерно равны.

Закон редких событий применяется в машиностроении для выборочного контроля готовой продукции, когда по техническим условиям в принимаемой партии продукции допускается некоторый процент брака (обычно небольшой) q<<0.1.

Если вероятность q события А очень мала (q≤0,1), а число испытаний велико, то вероятность того, что событие А наступит m раз в n испытаниях, будет равна



где λ = М(х) = nq

Для вычисления распределения Пуассона можно пользоваться следующими рекуррентными соотношениями

Распределение Пуассона играет важную роль в статистических методах обеспечения качества, поскольку с его помощью можно аппроксимировать гипергеометрическое и биномиальное распределения.

Такая аппроксимация допустима, когда , при условии, что qn имеет конечный предел и q<0.1. Когда п →∞ , а р → 0, среднее п р = т = const.

При помощи закона редких событий можно вычислить вероятность того, что в выборке из n единиц будет содержаться: 0,1,2,3, и т.д. бракованных деталей, т.е. заданное m раз. Можно также вычислить вероятность появления в такой выборке m штук дефектных деталей и более. Эта вероятность на основании правила сложения вероятностей будет равна-:

Пример 1 . В партии имеются бракованные детали, доля которых составляет 0,1. Последовательно берут 10 деталей и обследуют, после чего их возвращают в партию, т.е. испытания носят независимый характер. Какова вероятность того, что при проверке 10 деталей попадется одна бракованная?

Решение Из условия задачи q=0,1; n=10; m=1.Очевидно, что р=1-q=0,9.

Полученный результат можно отнести и к тому случаю, когда извлекается подряд 10 деталей без возврата их обратно в партию. При достаточно большой партии, например, 1000 шт., вероятность извлечения деталей изменится ничтожно мало. Поэтому при таких условиях извлечение бракованной детали можно рассматривать как событие, не зависящее от результатов предшествующих испытаний.

Пример 2. В партии имеется 1% бракованных дета- лей. Какова вероятность того, что при взятии из партии выборки объемом 50 единиц продукции в ней будет находиться 0, 1, 2, 3 ,4дефектных деталей??

Решение. Здесь q=0.01, nq=50*0.01=0.5

Таким образом, для эффективного применения распределения Пуассона как аппроксимации биномиального необходимо, чтобы вероятность успеха р была существенно меньше q . a п р = т была порядка единицы (или нескольких единиц).

Таким образом, в статистических методах обеспечения качества

гипергеометрический закон применим для выборок любого объема п и любого уровня несоответствий q ,

биномиальный закон и закон Пуассона являются его частными случаями соответственно при условии, если n/N<0,1 и