Область допустимых значений (ОДЗ): теория, примеры, решения. Что такое ОДЗ? Как найти одз уравнения

Для того, чтобы понять, что такое область определения функции, необходимо знать области определения основных элементарных функций. Для этого нужно углубить знания данной статьей. Будут рассмотрены различные сложнейшие комбинации функций вида y = x + x - 2 или y = 5 · x 2 + 1 · x 3 , y = x x - 5 или y = x - 1 5 - 3 . Рассмотрим теорию и решим несколько примеров с подобными заданиями.

Что значит найти область определения

После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y = f (x) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.

Ограничение области определения

Область определения рассматривается еще в школьной курсе. у действительных чисел она может быть (0 , + ∞) или такой [ − 3 , 1) ∪ [ 5 , 7) . Еще по виду функции можно визуально определить ее ОДЗ. Рассмотрим, на что может указывать наличие области определения:

Определение 1

  • при имеющемся знаменателе необходимо производить деление такого типа функции как y = x + 2 · x x 4 - 1 ;
  • при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа y = x + 1 или y = 2 3 · x + 3 x ;
  • при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как y = 5 · (x + 1) - 3 , y = - 1 + x 1 1 3 , y = (x 3 - x + 1) 2 , которые определены не для всех чисел;
  • при наличии переменной под знаком логарифма или в основании вида y = ln x 2 + x 4 или y = 1 + log x - 1 (x + 1) причем основание является числом положительным, как и число под знаком логарифма;
  • при наличии переменной, находящейся под знаком тангенса и котангенса вида y = x 3 + t g 2 · x + 5 или y = c t g (3 · x 3 - 1) , так как они существуют не для любого числа;
  • при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида y = a r c sin (x + 2) + 2 · x 2 , y = a r c cos x - 1 + x , область определения которых определяется ни интервале от - 1 до 1 .

При отсутствии хотя бы одного признака, область определения приходится искать другим образом. Рассмотрим пример функции вида y = x 4 + 2 · x 2 - x + 1 2 + 2 2 3 · x . Видно, что никаких ограничений она не имеет, так как в знаменателе нет переменной.

Правила нахождения области определения

Для примера рассмотрим функцию типа y = 2 · x + 1 . Для вычисления ее значения можем определить x . Из выражения 2 · x + 1 видно, что функция определена на множестве всех действительных чисел. Рассмотрим еще один пример для подробного определения.

Если задана функция типа y = 3 x - 1 , а необходимо найти область определения, тогда понятно, что следует обратить внимание на знаменатель. Известно, что на ноль делить нельзя. Отсюда получаем, что 3 x - 1 знаменатель равняется нулю при х = 1 , поэтому искомая область определения данной функции примет вид (− ∞ , 1) ∪ (1 , + ∞) и считается числовым множеством.

На рассмотрении примера y = x 2 - 5 · x + 6 видно, что имеется подкоренное выражение, которое всегда больше или равно нулю. Значит запись примет вид x 2 − 5 · x + 6 ≥ 0 . После решения неравенства получим, что имеются две точки, которые делят область определения на отрезки, которые записываются как (− ∞ , 2 ] ∪ [ 3 , + ∞) .

При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.

Область определения суммы, разности и произведения функций

Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:

Когда функция f f считается суммой n функций f 1 , f 2 , … , f n , иначе говоря, эта функция задается при помощи формулы y = f 1 (x) + f 2 (x) + … + f n (x) , тогда ее область определения считается пересечением областей определения функций f 1 , f 2 , … , f n . Данное утверждение можно записать как:

D (f) = D (f 1) D (f 2) . . . D (f n)

Пример 1

Найти область определения функции вида y = x 7 + x + 5 + t g x .

Решение

Заданная функция представляется как сумма четырех: степенной с показателем 7 ,степенной с показателем 1 , постоянной, функции тангенса.

По таблице определения видим, что D (f 1) = (− ∞ , + ∞) , D (f 2) = (− ∞ , + ∞) , D (f 3) = (− ∞ , + ∞) , причем область определения тангенса включает в себя все действительные числа, кроме π 2 + π · k , k ∈ Z .

Областью определения заданной функции f является пересечение областей определения f 1 , f 2 , f 3 и f 4 . То есть для функции существует такое количество действительных чисел, куда не входит π 2 + π · k , k ∈ Z .

Ответ: все действительные числа кроме π 2 + π · k , k ∈ Z .

Для нахождения области определения произведения функций необходимо применять правило:

Определение 2

Когда функция f считается произведением n функций f 1 , f 2 , f 3 и f n , тогда существует такая функция f , которую можно задать при помощи формулы y = f 1 (x) · f 2 (x) · … · f n (x) , тогда ее область определения считается областью определения для всех функций.

Запишется D (f) = D (f 1) D (f 2) . . . D (f n)

Пример 2

Найти область определения функции y = 3 · a r c t g x · ln x .

Решение

Правая часть формулы рассматривается как f 1 (x) · f 2 (x) · f 3 (x) , где за f 1 является постоянной функцией, f 2 является арктангенсом, f 3 – логарифмической функцией с основанием e . По условию имеем, что D (f 1) = (− ∞ , + ∞) , D (f 2) = (− ∞ , + ∞) и D (f 3) = (0 , + ∞) . Мы получаем, что

D (f) = D (f 1) D (f 2) D (f n) = (- ∞ , + ∞) (- ∞ , + ∞) D (0 , + ∞) = (0 , + ∞)

Ответ : область определения y = 3 · a r c t g x · ln x – множество всех действительных чисел.

Необходимо остановиться на нахождении области определения y = C · f (x) , где С является действительным числом. Отсюда видно, что ее областью определения и областью определения f совпадающими.

Функция y = C · f (x) – произведение постоянной функции и f . Область определения – это все действительные числа области определения D (f) . Отсюда видим, что область определения функции y = C · f (x) является - ∞ , + ∞ D (f) = D (f) .

Получили, что область определения y = f (x) и y = C · f (x) , где C является некоторое действительное число, совпадают. Это видно на примере определения корня y = x считается [ 0 , + ∞) , потому как область определения функции y = - 5 · x - [ 0 , + ∞) .

Области определения y = f (x) и y = − f (x) совпадают, что говорит о том, что его область определения разности функции такая же, как и область определения их суммы.

Пример 3

Найти область определения функции y = log 3 x − 3 · 2 x .

Решение

Необходимо рассмотреть как разность двух функций f 1 и f 2 .

f 1 (x) = log 3 x и f 2 (x) = 3 · 2 x . Тогда получим, что D (f) = D (f 1) D (f 2) .

Область определения записывается как D (f 1) = (0 , + ∞) . Приступим к области определения f 2 . в данном случае она совпадает с областью определения показательной, тогда получаем, что D (f 2) = (− ∞ , + ∞) .

Для нахождения области определения функции y = log 3 x − 3 · 2 x получим, что

D (f) = D (f 1) D (f 2) = (0 , + ∞) - ∞ , + ∞

Ответ : (0 , + ∞) .

Необходимо озвучить утверждение о том, что областью определения y = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 является множество действительных чисел.

Рассмотрим y = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , где в правой части имеется многочлен с одной переменной стандартного вида в виде степени n с действительными коэффициентами. Допускается рассматривать ее в качестве суммы (n + 1) -ой функции. Область определения для каждой из таких функций включается множество действительных чисел, которое называется R .

Пример 4

Найти область определения f 1 (x) = x 5 + 7 x 3 - 2 x 2 + 1 2 .

Решение

Примем обозначение f за разность двух функций, тогда получим, что f 1 (x) = x 5 + 7 x 3 - 2 x 2 + 1 2 и f 2 (x) = 3 · x - ln 5 . Выше было показано, что D (f 1) = R . Область определения для f 2 является совпадающей со степенной при показателе – ln 5 , иначе говоря, что D (f 2) = (0 , + ∞) .

Получаем, что D (f) = D (f 1) D (f 2) = - ∞ , + ∞ (0 , + ∞) = (0 , + ∞) .

Ответ : (0 , + ∞) .

Область определения сложной функции

Для решения данного вопроса необходимо рассмотреть сложную функцию вида y = f 1 (f 2 (x)) . Известно, что D (f) является множеством всех x из определения функции f 2 , где область определения f 2 (x) принадлежит области определения f 1 .

Видно, что область определения сложной функции вида y = f 1 (f 2 (x)) находится на пересечении двух множеств таких, где x ∈ D (f 2) и f 2 (x) ∈ D (f 1) . В стандартном обозначении это примет вид

x ∈ D (f 2) f 2 (x) ∈ D (f 1)

Рассмотрим решение нескольких примеров.

Пример 5

Найти область определения y = ln x 2 .

Решение

Данную функцию представляем в виде y = f 1 (f 2 (x)) , где имеем, что f 1 является логарифмом с основанием e , а f 2 – степенная функция с показателем 2 .

Для решения необходимо использовать известные области определения D (f 1) = (0 , + ∞) и D (f 2) = (− ∞ , + ∞) .

Тогда получим систему неравенств вида

x ∈ D (f 2) f 2 (x) ∈ D (f 1) ⇔ x ∈ - ∞ , + ∞ x 2 ∈ (0 , + ∞) ⇔ ⇔ x ∈ (- ∞ , + ∞) x 2 > 0 ⇔ x ∈ (- ∞ , + ∞) x ∈ (- ∞ , 0) ∪ (0 , + ∞) ⇔ ⇔ x ∈ (- ∞ , 0) ∪ (0 , + ∞)

Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.

Ответ : (− ∞ , 0) ∪ (0 , + ∞) .

Пример 6

Найти область определения функции y = (a r c sin x) - 1 2 .

Решение

Так как дана сложная функция, необходимо рассматривать ее как y = f 1 (f 2 (x)) , где f 1 является степенной функцией с показателем - 1 2 , а f 2 функция арксинуса, теперь необходимо искать ее область определения. Необходимо рассмотреть D (f 1) = (0 , + ∞) и D (f 2) = [ − 1 , 1 ] . Теперь найдем все множества значений x , где x ∈ D (f 2) и f 2 (x) ∈ D (f 1) . Получаем систему неравенств вида

x ∈ D (f 2) f 2 (x) ∈ D (f 1) ⇔ x ∈ - 1 , 1 a r c sin x ∈ (0 , + ∞) ⇔ ⇔ x ∈ - 1 , 1 a r c sin x > 0

Для решения a r c sin x > 0 необходимо прибегнуть к свойствам функции арксинуса. Его возрастание происходит на области определения [ − 1 , 1 ] , причем обращается в ноль при х = 0 , значит, что a r c sin x > 0 из определения x принадлежит промежутку (0 , 1 ] .

Преобразуем систему вида

x ∈ - 1 , 1 a r c sin x > 0 ⇔ x ∈ - 1 , 1 x ∈ (0 , 1 ] ⇔ x ∈ (0 , 1 ]

Область определения искомой функции имеет интервал равный (0 , 1 ] .

Ответ: (0 , 1 ] .

Постепенно подошли к тому, что будем работать со сложными функциями общего вида y = f 1 (f 2 (… f n (x)))) . Область определения такой функции ищется из x ∈ D (f n) f n (x) ∈ D (f n - 1) f n - 1 (f n (x)) ∈ D (f n - 2) . . . f 2 (f 3 (. . . (f n (x))) ∈ D (f 1) .

Пример 7

Найти область определения y = sin (l g x 4) .

Решение

Заданная функция может быть расписана, как y = f 1 (f 2 (f 3 (x))) , где имеем f 1 – функция синуса, f 2 – функция с корнем 4 степени, f 3 – логарифмическая функция.

Имеем, что по условию D (f 1) = (− ∞ , + ∞) , D (f 2) = [ 0 , + ∞) , D (f 3) = (0 , + ∞) . Тогда областью определения функции – это пересечение множеств таких значений, где x ∈ D (f 3) , f 3 (x) ∈ D (f 2) , f 2 (f 3 (x)) ∈ D (f 1) . Получаем, что

x ∈ D (f 3) f 3 (x) ∈ D (f 2) f 2 (f 3 (x)) ∈ D (f 1) ⇔ x ∈ (0 , + ∞) lg x ∈ [ 0 , + ∞) lg x 4 ∈ - ∞ , + ∞

Условие lg x 4 ∈ - ∞ , + ∞ аналогично условию l g x ∈ [ 0 , + ∞) , значит

x ∈ (0 , + ∞) lg x ∈ [ 0 , + ∞) lg x 4 ∈ - ∞ , + ∞ ⇔ x ∈ (0 , + ∞) lg x ∈ [ 0 , + ∞) lg x ∈ [ 0 , + ∞) ⇔ ⇔ x ∈ (0 , + ∞) lg x ∈ [ 0 , + ∞) ⇔ x ∈ (0 , + ∞) lg x ≥ 0 ⇔ ⇔ x ∈ (0 , + ∞) lg x ≥ lg 1 ⇔ x ∈ (0 , + ∞) x ≥ 1 ⇔ ⇔ x ∈ [ 1 , + ∞)

Ответ : [ 1 , + ∞) .

При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.

Область определения дроби

Рассмотрим функцию вида f 1 (x) f 2 (x) . Стоит обратить внимание на то, что данная дробь определяется из множества обеих функций, причем f 2 (х) не должна обращаться в ноль. Тогда получаем, что область определения f для всех x записывается в виде x ∈ D (f 1) x ∈ D (f 2) f 2 (x) ≠ 0 .

Запишем функцию y = f 1 (x) f 2 (x) в виде y = f 1 (x) · (f 2 (x)) - 1 . Тогда получим произведение функций вида y = f 1 (x) с y = (f 2 (x)) - 1 . Областью определения функции y = f 1 (x) является множество D (f 1) , а для сложной y = (f 2 (x)) - 1 определим из системы вида x ∈ D (f 2) f 2 (x) ∈ (- ∞ , 0) ∪ (0 , + ∞) ⇔ x ∈ D (f 2) f 2 (x) ≠ 0 .

Значит, x ∈ D (f 1) x ∈ D (f 2) f 2 (x) ∈ (- ∞ , 0) ∪ (0 , + ∞) ⇔ x ∈ D (f 1) x ∈ D (f 2) f 2 (x) ≠ 0 .

Пример 8

Найти область определения y = t g (2 · x + 1) x 2 - x - 6 .

Решение

Заданная функция дробная, поэтому f 1 – сложная функция, где y = t g (2 · x + 1) и f 2 – целая рациональная функция, где y = x 2 − x − 6 , а область определения считается множеством всех чисел. Можно записать это в виде

x ∈ D (f 1) x ∈ D (f 2) f 2 (x) ≠ 0

Представление сложной функции y = f 3 (f 4 (x)) , где f 3 –это функция тангенс, где в область определения включены все числа, кроме π 2 + π · k , k ∈ Z , а f 4 – это целая рациональная функция y = 2 · x + 1 с областью определения D (f 4) = (− ∞ , + ∞) . После чего приступаем к нахождению области определения f 1:

x ∈ D (f 4) 2 · x + 1 ∈ D (f 3) ⇔ x ∈ (- ∞ , + ∞) 2 x + 1 ≠ π 2 + π · k , k ∈ Z ⇔ x ≠ π 4 - 1 2 + π 2 · k , k ∈ Z

Еще необходимо рассмотреть нижнюю область определения y = t g (2 · x + 1) x 2 - x - 6 . Тогда получаем, что

x ∈ D (f 1) x ∈ D (f 2) f 2 (x) ≠ 0 ⇔ x ≠ π 4 - 1 2 + π 2 · k , k ∈ Z x ∈ - ∞ , + ∞ x 2 - x - 6 ≠ 0 ⇔ ⇔ x ≠ π 4 - 1 2 + π 2 · k , k ∈ Z x ≠ - 2 x ≠ 3

Ответ: множество действительных чисел, кроме - 2 , 3 и π 4 - 1 2 + π 2 · k , k ∈ Z .

Область определения логарифма с переменной в основании

Определение 3

Определение логарифма существует для положительных оснований не равных 1 . Отсюда видно, что функция y = log f 2 (x) f 1 (x) имеет область определения, которая выглядит так:

x ∈ D (f 1) f 1 (x) > 0 x ∈ D (f 2) f 2 (x) > 0 f 2 (x) ≠ 1

А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:

y = log a f 1 (x) log a f 2 (x) , a > 0 , a ≠ 1 . После чего можно приступать к области определения дробной функции.

Область определения логарифмической функции – это множество действительных положительных чисел, тогда области определения сложных функций типа y = log a f 1 (x) и y = log a f 2 (x) можно определить из получившейся системы вида x ∈ D (f 1) f 1 (x) > 0 и x ∈ D (f 2) f 2 (x) > 0 . Иначе эту область можно записать в виде y = log a f 1 (x) log a f 2 (x) , a > 0 , a ≠ 1 , что означает нахождение y = log f 2 (x) f 1 (x) из самой системы вида

x ∈ D (f 1) f 1 (x) > 0 x ∈ D (f 2) f 2 (x) > 0 log a f 2 (x) ≠ 0 = x ∈ D (f 1) f 1 (x) > 0 x ∈ D (f 2) f 2 (x) > 0 f 2 (x) ≠ 1

Пример 9

Обозначить область определения функции y = log 2 · x (x 2 - 6 x + 5) .

Решение

Следует принять обозначения f 1 (x) = x 2 − 6 · x + 5 и f 2 (x) = 2 · x , отсюда D (f 1) = (− ∞ , + ∞) и D (f 2) = (− ∞ , + ∞) . Необходимо приступить к поиску множества x , где выполняется условие x ∈ D (f 1) , f 1 (x) > 0 , x ∈ D (f 2) , f 2 (x) > 0 , f 2 (x) ≠ 1 . Тогда получаем систему вида

x ∈ (- ∞ , + ∞) x 2 - 6 x + 5 > 0 x ∈ (- ∞ , + ∞) 2 · x > 0 2 · x ≠ 1 ⇔ x ∈ (- ∞ , + ∞) x ∈ (- ∞ , 1) ∪ (5 , + ∞) x ∈ (- ∞ , + ∞) x > 0 x ≠ 1 2 ⇔ ⇔ x ∈ 0 , 1 2 ∪ 1 2 , 1 ∪ (5 , + ∞)

Отсюда видим, что искомой областью функции y = log 2 · x (x 2 - 6 x + 5) считается множнство, удовлетворяющее условию 0 , 1 2 ∪ 1 2 , 1 ∪ (5 , + ∞) .

Ответ: 0 , 1 2 ∪ 1 2 , 1 ∪ (5 , + ∞) .

Область определения показательно-степенной функции

Показательно-степенная функция задается формулой вида y = (f 1 (x)) f 2 (x) . Ее область определениявключает в себя такие значения x , которые удовлетворяют системе x ∈ D (f 1) x ∈ D (f 2) f 1 (x) > 0 .

Эта область позволяет переходить от показательно-степенной к сложной вида y = a log a (f 1 (x)) f 2 (x) = a f 2 (x) · log a f 1 (x) , где где a > 0 , a ≠ 1 .

Пример 10

Найти область определения показательно-степенной функции y = (x 2 - 1) x 3 - 9 · x .

Решение

Примем за обозначение f 1 (x) = x 2 − 1 и f 2 (x) = x 3 - 9 · x .

Функция f 1 определена на множестве действительных чисел, тогда получаем область определения вида D (f 1) = (− ∞ , + ∞) . Функция f 2 является сложной, поэтому ее представление примет вид y = f 3 (f 4 (x)) , а f 3 – квадратным корнем с областью определения D (f 3) = [ 0 , + ∞) , а функция f 4 – целой рациональной, D (f 4) = (− ∞ , + ∞) . Получаем систему вида

x ∈ D (f 4) f 4 (x) ∈ D (f 3) ⇔ x ∈ (- ∞ , + ∞) x 3 - 9 · x ≥ 0 ⇔ ⇔ x ∈ (- ∞ , + ∞) x ∈ - 3 , 0 ∪ [ 3 , + ∞) ⇔ x ∈ - 3 , 0 ∪ [ 3 , + ∞)

Значит, область определения для функции f 2 имеет вид D (f 2) = [ − 3 , 0 ] ∪ [ 3 , + ∞) . После чего необходимо найти область определения показательно-степенной функции по условию x ∈ D (f 1) x ∈ D (f 2) f 1 (x) > 0 .

Получаем систему вида x ∈ - ∞ , + ∞ x ∈ - 3 , 0 ∪ [ 3 , + ∞) x 2 - 1 > 0 ⇔ x ∈ - ∞ , + ∞ x ∈ - 3 , 0 ∪ [ 3 , + ∞) x ∈ (- ∞ , - 1) ∪ (1 , + ∞) ⇔ ⇔ x ∈ - 3 , - 1 ∪ [ 3 , + ∞)

Ответ: [ − 3 , − 1) ∪ [ 3 , + ∞)

В общем случае

Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.

Таблицы основных результатов

Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф

Расположим функции и их области определения.

Функция Ее область определения

Прямая пропорциональность y = k · x

R
Линейная y = k · x + b R

Обратная пропорциональность y = k x

- ∞ , 0 ∪ 0 , + ∞
Квадратичная y = a · x 2 + b · x + c R
y = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 R
Целая рациональная R
y = C · f (x) , где C - число D (f)

Дробная y = f 1 (x) f 2 (x)

В частности, если f 1 (x) , f 2 (x) - многочлены

Множество всех x , которые одновременно удовлетворяют условиям
x ∈ D (f 1) , x ∈ D (f 2) , f 2 (x) ≠ 0

y = f (x) n , где n - четное x ∈ D (f 1) , f (x) ≥ 0

y = log f 2 (x) f 1 (x)

В частности, y = log a f 1 (x)

В частности, y = log f 2 (x) a

x ∈ D (f 1) , f 1 (x) > 0 , x ∈ D (f 2) , f 2 (x) > 0 , f 2 (x) ≠ 1

x ∈ D (f 1) , f 1 (x) > 0

x ∈ D (f 2) , f 2 > 0 , f 2 (x) ≠ 1

Показательно-степенная y = (f 1 (x)) f 2 (x) x ∈ D (f 1) , x ∈ D (f 2) , f 1 (x) > 0

Отметим, что преобразования можно выполнять, начиная с правой части выражения. Отсюда видно, что допускаются тождественные преобразования, которые на область определения не влияют. Например, y = x 2 - 4 x - 2 и y = x + 2 являются разными функциями, так как первая определяется на (− ∞ , 2) ∪ (2 , + ∞) , а вторая из множества действительных чисел. Из преобразования y = x 2 - 4 x - 2 = x - 2 x + 2 x - 2 = x + 2 видно, что функция имеет смысл при x ≠ 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для начала научимся находить область определения суммы функций . Понятно, что такая функция имеет смысл для всех таких значений переменной, при которой имеют смысл все функции, составляющие сумму. Поэтому не вызывает сомнений справедливость следующего утверждения:

Если функция f - это сумма n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)+f 2 (x)+…+f n (x) , то областью определения функции f является пересечение областей определения функций f 1 , f 2 , …, f n . Запишем это как .

Давайте условимся и дальше использовать записи, подобные последней, под которыми будем понимать , записанных внутри фигурной скобки, либо одновременное выполнение каких-либо условий. Это удобно и достаточно естественно перекликается со смыслом систем.

Пример.

Дана функция y=x 7 +x+5+tgx , и надо найти ее область определения.

Решение.

Функция f представлена суммой четырех функций: f 1 - степенной функции с показателем 7 , f 2 - степенной функции с показателем 1 , f 3 - постоянной функции и f 4 - функции тангенс.

Взглянув в таблицу областей определения основных элементарных функций, находим, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) , D(f 3)=(−∞, +∞) , а областью определения тангенса является множество всех действительных чисел, кроме чисел .

Область определения функции f – это пересечение областей определения функций f 1 , f 2 , f 3 и f 4 . Достаточно очевидно, что это есть множество всех действительных чисел, за исключением чисел .

Ответ:

множество всех действительных чисел, кроме .

Переходим к нахождению области определения произведения функций . Для этого случая имеет место аналогичное правило:

Если функция f - это произведение n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)·f 2 (x)·…·f n (x) , то область определения функции f есть пересечение областей определения функций f 1 , f 2 , …, f n . Итак, .

Оно и понятно, в указанной области определены все функции произведения, а значит и сама функция f .

Пример.

Y=3·arctgx·lnx .

Решение.

Структуру правой части формулы, задающей функцию, можно рассматривать так f 1 (x)·f 2 (x)·f 3 (x) , где f 1 – это постоянная функция, f 2 – это функция арктангенс, а f 3 – логарифмическая функция с основанием e .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) и D(f 3)=(0, +∞) . Тогда .

Ответ:

областью определения функции y=3·arctgx·lnx является множество всех действительных положительных чисел.

Отдельно остановимся на нахождении области определения функции, заданной формулой y=C·f(x) , где С – некоторое действительное число. Легко показать, что область определения этой функции и область определения функции f совпадают. Действительно, функция y=C·f(x) – это произведение постоянной функции и функции f . Областью определения постоянной функции является множество всех действительных чисел, а область определения функции f есть D(f) . Тогда область определения функции y=C·f(x) есть , что и требовалось показать.

Итак, области определения функций y=f(x) и y=C·f(x) , где С – некоторое действительное число, совпадают. Например, область определения корня есть , становится ясно, что D(f) - это множество всех x из области определения функции f 2 , для которых f 2 (x) входит в область определения функции f 1 .

Таким образом, область определения сложной функции y=f 1 (f 2 (x)) - это пересечение двух множеств: множества всех таких x , что x∈D(f 2) , и множества всех таких x , для которых f 2 (x)∈D(f 1) . То есть, в принятых нами обозначениях (это по сути система неравенств).

Давайте рассмотрим решения нескольких примеров. В процессе мы не будем подробно описывать , так как это выходит за рамки этой статьи.

Пример.

Найти область определения функции y=lnx 2 .

Решение.

Исходную функцию можно представить в виде y=f 1 (f 2 (x)) , где f 1 – логарифм с основанием e , а f 2 – степенная функция с показателем 2 .

Обратившись к известным областям определения основных элементарных функций, имеем D(f 1)=(0, +∞) и D(f 2)=(−∞, +∞) .

Тогда

Так мы нашли нужную нам область определения функции, ей является множество всех действительных чисел, кроме нуля.

Ответ:

(−∞, 0)∪(0, +∞) .

Пример.

Какова область определения функции ?

Решение.

Данная функция сложная, ее можно рассматривать как y=f 1 (f 2 (x)) , где f 1 – степенная функция с показателем , а f 2 – функция арксинус, и нам нужно найти ее область определения.

Посмотрим, что нам известно: D(f 1)=(0, +∞) и D(f 2)=[−1, 1] . Остается найти пересечение множеств таких значений x , что x∈D(f 2) и f 2 (x)∈D(f 1) :

Чтобы arcsinx>0 вспомним свойства функции арксинус . Арксинус возрастает на всей области определения [−1, 1] и обращается в ноль при x=0 , следовательно, arcsinx>0 для любого x из промежутка (0, 1] .

Вернемся к системе:

Таким образом, искомая область определения функции есть полуинтервал (0, 1] .

Ответ:

(0, 1] .

Теперь давайте перейдем к сложным функциям общего вида y=f 1 (f 2 (…f n (x)))) . Область определения функции f в этом случае находится как .

Пример.

Найти область определения функции .

Решение.

Заданную сложную функцию можно расписать как y=f 1 (f 2 (f 3 (x))) , где f 1 – sin , f 2 – функция корень четвертой степени, f 3 – lg .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=∪ .

Все это говорит о том, как важно наличие ОДЗ.

Пример 3

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Пример 4

Найти ОДЗ выражения 1 3 - x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Пример 5

Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Пример 6

Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

Ответ: [ − 1 , 0) ∪ (0 , + ∞)

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

Тождественные преобразования:

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Пример 7

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Пример 8

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Пример 9

Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

Нужно избегать преобразований, которые сужают ОДЗ.

Пример 10

Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Пример 11

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Пример 12

Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как ?
Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – . Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел) . За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

Область определения функции, в которой есть дробь

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции .

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение : в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции . Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ : область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание , а фигурные скобки – множество . Ответ можно равносильно записать в виде объединения трёх интервалов:

Кому как нравится.

В точках функция терпит бесконечные разрывы , а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.

Пример 2

Найти область определения функции

Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока.

Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .

Все функции наподобие определены и непрерывны на .

Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен:

Пример 3

Найти область определения функции

Решение : попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение :

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ : область определения:

Пример 4

Найти область определения функции

Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-й степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте с неравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть, меняя у них (слагаемых) знаки.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменить знак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальным методом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой ? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным . Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие (так как ).

Пример 9

Найти область определения функции

Решение : в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:

Ответ : область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция (квадратный трёхчлен из Примера №7) определена на интервалах , а функция (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа определены на всей числовой прямой.

Полезная информация : интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля =). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: . Если же основание степени заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение : в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы относительно оси , приходим к выводу, что неравенству удовлетворяет интервал (синяя штриховка):

Неравенству , очевидно, соответствует «красный» полуинтервал .

Поскольку оба условия должны выполняться одновременно , то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ : область определения:

Типовое неравенство , как демонстрировалось в Примере №8, нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для или . Также можно добавить какие-нибудь непрерывные на функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение : составим и решим систему:

Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству и, согласно второму условию, исключим две точки:

Значение оказалось вообще не при делах.

Ответ : область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте;-)

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

Области определения функций
с тангенсами, котангенсами, арксинусами, арккосинусами

Если в некоторую функцию входит , то из её области определения исключаются точки , где Z – множество целых чисел . В частности, как отмечалось в статье Графики и свойства элементарных функций , у функции выколоты следующие значения:

То есть, область определения тангенса: .

Убиваться сильно не будем:

Пример 15

Найти область определения функции

Решение : в данном случае и в область определения не войдут следующие точки:

Скинем «двойку» левой части в знаменатель правой части:

В результате :

Ответ : область определения: .

В принципе, ответ можно записать и в виде объединения бесконечного количества интервалов, но конструкция получится весьма громоздкой:

Аналитическое решение полностью согласуется с геометрическим преобразованием графика : если аргумент функции умножить на 2, то её график сожмётся к оси в два раза. Заметьте, как у функции уполовинился период, и точки разрыва участились в два раза. Тахикардия.

Похожая история с котангенсом. Если в некоторую функцию входит , то из её области определения исключаются точки . В частности, для функции автоматной очередью расстреливаем следующие значения:

Иными словами:

Шамшурин А.В. 1

Гагарина Н.А. 1

1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №31»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Я начал работу с того, что в Интернете пересмотрел множество тем по математике и выбрал эту тему, потому что уверен, что важность нахождения ОДЗ играет огромную роль в решении уравнений и задач. В своей исследовательской работе я рассмотрел уравнения, в которых достаточно только нахождения ОДЗ, опасность, необязательность, ограниченность ОДЗ, некоторые запреты в математике. Самое главное для меня хорошо сдать ЕГЭ по математике, а для этого надо знать: когда, зачем и как находить ОДЗ. Это и подтолкнуло меня к исследованию темы, целью которой, стало показать, что овладение данной темой поможет учащимся правильно выполнить задания на ЕГЭ. Чтобы достичь этой цели, я исследовал дополнительную литературу и другие источники. Мне стало интересно, а знают учащиеся нашей школы: когда, зачем и как находить ОДЗ. Поэтому я провёл тест по теме «Когда, зачем и как находить ОДЗ?» (было дано 10 уравнений). Количество учащихся - 28. Справились - 14 %, опасность ОДЗ (учли) - 68 %, необязательность (учли) - 36 %.

Цель : выявление: когда, зачем и как находить ОДЗ.

Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

Задачи:

  1. Показать значимость ОДЗ при решении уравнений и неравенств.
  2. Провести практическую работу по данной теме и подвести её итоги.

Я думаю полученные мною, знания и навыки помогут мне решить вопрос: искать ОДЗ или не надо? Я перестану делать ошибки, научившись правильно делать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

Глава 1

Что такое ОДЗ?

ОДЗ - это область допустимых значений , то есть это все значения переменной, при которых выражение имеет смысл.

Важно. Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных мест.

Некоторые запреты в математике. Таких запретных действий в математике очень мало. Но их не все помнят…

  • Выражения, состоящие под знаком чётной кратности или должно быть>0 или равно нулю, ОДЗ:f(x)
  • Выражение, стоящее в знаменателе дроби не может быть равно нулю, ОДЗ:f(x)
  • |f(x)|=g(x), ОДЗ: g(x) 0

Как записать ОДЗ? Очень просто. Всегда рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Преобразование примера может изменить ОДЗ и, соответственно ответ.

Алгоритм нахождения ОДЗ:

  1. Определите вид запрета.
  2. Найти значения, при которых выражение не имеет смысла.
  3. Исключить эти значения из множества действительных чисел R.

Решить уравнение: =

Без ОДЗ

С ОДЗ

Ответ: х=5

ОДЗ: => =>

Ответ: корней нет

Область допустимых значений оберегает нас от таких серьёзных ошибок. Честно говоря, именно из-за ОДЗ многие «ударники» превращаются в «троечников». Считая, что поиск и учёт ОДЗ малозначимым шагом в решении, они пропускают его, а потом удивляются: «почему учитель поставил 2?». Да потому и поставил, что ответ неверен! Это не «придирки» учителя, а вполне конкретная ошибка, такая же как неверное вычисление или потерянный знак.

Дополнительные уравнения:

а) = ; б) -42=14х+ ; в) =0; г) |x-5|=2x-2

Глава 2

ОДЗ. Зачем? Когда? Как?

Область допустимых значений - есть решение

  1. ОДЗ представляет собой пустое множество, а значит, исходный пример не имеет решений
  • = ОДЗ:

Ответ: корней нет.

  • = ОДЗ:

Ответ: корней нет.

0, уравнение не имеет корней

Ответ: корней нет.

Дополнительные примеры:

а) + =5; б) + =23х-18; в) =0.

  1. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

ОДЗ: х=2, х=3

Проверка: х=2, + , 0<1, верно

Проверка: х=3, + , 0<1, верно.

Ответ: х=2, х=3.

  • > ОДЗ: х=1,х=0

Проверка: х=0, > , 0>0, неверно

Проверка: х=1, > , 1>0, верно

Ответ: х=1.

  • + =х ОДЗ: х=3

Проверка: + =3, 0=3, неверно.

Ответ: корней нет.

Дополнительные примеры:

а) = ; б) + =0; в) + =х -1

Опасность ОДЗ

Заметим, тождественные преобразования могут:

  • не влиять на ОДЗ;
  • приводить к расширенному ОДЗ;
  • приводить к сужению ОДЗ.

Известно также, что в результате некоторых преобразований, изменяющих исходное ОДЗ, может привести к неверным решениям.

Давайте поясним каждый случай примером.

1) Рассмотрим выражение х +4х+7х, ОДЗ переменной х для этого есть множество R. Приведём подобные слагаемые. В результате оно примет вид x 2 +11x. Очевидно, ОДЗ переменной x этого выражения тоже является множество R. Таким образом, проведенное преобразование не изменило ОДЗ.

2) Возьмем уравнение x+ - =0. В этом случае ОДЗ: x≠0. Это выражение тоже содержит подобные слагаемые, после приведения которых, приходим к выражению x, для которого ОДЗ есть R. Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

3) Возьмем выражение. ОДЗ переменной x определяется неравенством (x−5)·(x−2)≥0, ОДЗ: (−∞, 2]∪∪/Режим доступа: Материалы сайтов www.fipi.ru, www.eg

  • Область допустимых значений - есть решение [Электронный ресурс]/Режим доступа: rudocs.exdat.com›docs/index-16853.html
  • ОДЗ - область допустимых значений, как найти ОДЗ [Электронный ресурс]/Режим доступа: cleverstudents.ru›expressions/odz.html
  • Область допустимых значений: теория и практика [Электронный ресурс]/Режим доступа: pandia.ru›text/78/083/13650.php
  • Что такое ОДЗ [Электронный ресурс]/ Режим доступа: www.cleverstudents.ru›odz.html
  • Что такое ОДЗ и как его искать - объяснение и пример. Электронный ресурс]/ Режим доступа: cos-cos.ru›math/82/
  • Приложение 1

    Практическая работа «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    │х+14│= 2 - 2х

    │3-х│=1 - 3х

    Приложение 2

    Ответы к заданиям практической работы «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    Ответ: корней нет

    Ответ: х-любое число, кроме х=5

    9х+ = +27 ОДЗ: х≠3

    Ответ: корней нет

    ОДЗ: х=-3, х=5. Ответ:-3;5.

    у= -убывает,

    у= -возрастает

    Значит, уравнение имеет не более одного корня. Ответ: х=6.

    ОДЗ: → →х≥5

    Ответ:х≥5, х≤-6.

    │х+14│=2-2х ОДЗ:2-2х≥0, х≤1

    х=-4, х=16, 16 не принадлежит ОДЗ

    Убывает, -возрастает

    Уравнение имеет не более одного корня. Ответ: корней нет.

    0, ОДЗ: х≥3,х≤2

    Ответ: х≥3,х≤2

    8х+ = -32, ОДЗ: х≠-4.

    Ответ: корней нет.

    х=7, х=1. Ответ: решений нет

    Возрастает, - убывает

    Ответ: х=2.

    0 ОДЗ: х≠15

    Ответ: х- любое число, кроме х=15.

    │3-х│=1-3х, ОДЗ: 1-3х≥0, х≤

    х=-1, х=1 не принадлежит ОДЗ.

    Ответ: х=-1.