Когда жидкость смачивает твердое тело. Смачивание и несмачивание. Смотреть что такое "Смачивание" в других словарях

Смачиваемость твердого тела жидкостью - это способность жидкости растекаться по поверхности твердого тела под влиянием поверхностно-молекулярных сил.

Контур капли на поверхности твердого тела, по которому происходит соприкосновение трех фаз - твердой, жидкой и газообразной, называется периметром смачивания. Поверхности по-ровых каналов пористых сред характеризуются значительной неоднородностью по смачиваемости. В этой связи о смачиваемости породы в целом различными жидкостями можно говорить лишь как об осредненном показателе, характеризующем лишь соотношение и геометрию участков с различной степенью смачиваемости.

Осредненную избирательную смачиваемость горной породы пластовыми жидкостями можно оценить по скорости впитывания воды в нефтенасыщенный керн. В этом случае измеряется лишь относительная смачиваемость породы (относительно смачивае-

мости другого образца породы, свойства поверхности которого считаются известными). Это связано с зависимостью скорости впитывания воды в пористую среду не только от величины углов смачивания, но и от многочисленных свойств породы, учет влияния которых затруднен.

Мерой смачивания твердого тела жидкостью служит краевой угол смачивания в, образованный поверхностью твердого тела и касательной к поверхности капли в точке ее соприкосновения с телом (рис. 7).

Рис. 7. Различные случаи смачивания твердого тела жидкостью: жидкость смачивает твердое тело (а); промежуточное состояние (б); жидкость не смачивает твердое тело (в); 1 - жидкость; 2 - воздух; 3 - твердое тело

Если краевой угол в < 90°, то жидкость смачивает твердую поверхность; если угол #>90°, то жидкость не смачивает твердую поверхность; если угол 0 = 90°, то жидкость находится в промежуточном состоянии.

Смачиваемая водой поверхность твердого тела, для которой в < 90°, называется гидрофильной. Не смачиваемая водой поверхность твердого тела, для которой в > 90°, называется гидрофобной. Смачивание происходит в результате проявления молекулярных сил, действующих на разделе трех фаз: твердой - 3, газообразной - 2, жидкой - 1. По способности жидкости смачивать породу судят о величине поверхностного натяжения в системе порода-жидкость-газ или порода-жидкость-жидкость.



При равновесии сил, приложенных к единице длины периметра смачивания, будем иметь

где Gj_ 2 , Gj_ 3 и G 2 _ 3 - поверхностные натяжения на границе фаз 1-2, 1-3, 2-3.

Горные породы, способные вмещать нефть, газ, воду и отдавать их при разработке, называются коллекторами. Большинство пород-коллекторов имеет осадочное происхождение. Нефть и газ содержатся в терригенных коллекторах, таких как пески, песчаники, алевролиты, и в карбонатных коллекторах - известняки, доломиты, мел.

Породы-коллектора должны обладать емкостью (рис. 8), т.е. системой пор (пустот), трещин и каверн.

Рис. 8. Поровое пространство в горной породе: 1 - минеральные зерна; 2 - поровое пространство породы, заполненное жидкостью или газом

Но не все породы, обладающие емкостью, являются проницаемыми для нефти и газа, т.е. коллекторами. Поэтому важно знать не только пористость коллекторов, но и проницаемость. Проницаемость горных пород зависит от поперечных (к направлению движения углеводородов) размеров пустот в породе.

Принято подразделять коллекторы на три типа: гранулярные, или поровые (только обломочные горные породы), трещинные (любые горные породы) и каверновые (только карбонатные породы).

Емкость перового коллектора называется пористостью. Для характеристики пористости применяется коэффициент пористости, который показывает, какую часть от всего объема горной породы составляют поры. По размерам поры делятся на сверхкапиллярные (более 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (менее 0,2 мкм).

Нефть, газ и вода в сверхкапиллярных порах свободно перемещаются под действием гравитационных сил. В капиллярных порах движение нефти, газа и воды затруднено вследствие проявления сил молекулярного сцепления. В субкапиллярных порах движение нефти, газа и воды не происходит. В пласте движение нефти, газа и воды происходит по сообщающимся каналам размером более 0,2 мкм. Пористость подразделяют на общую, открытую и эффективную.

Общая пористость - это объем всех пор в породе. Коэффициент общей пористости представляется отношением объема всех пор Vj к объему образца породы V 2:

которые сообщаются между собой. Открытая пористость характеризуется коэффициентом открытой пористости £ no как отношение суммарного объема открытых пор V 0 к объему образца породы V 2 ".

Существует также понятие эффективной пористости, которая определяется наличием пор в породе, из которых нефть и газ могут быть извлечены при разработке. Коэффициент эффективной пористости К П ^ равен отношению объема пор У эф, через ко-

торые возможно движение нефти, газа и воды при определенных температуре и давлении, к объему образца породы V 2:

коэффициент пористости горных пород составляет от 17-25% до 40%.

Важным показателем, характеризующим свойства горной породы пропускать нефть, газ и воду, является проницаемость. Единица проницаемости 1 мкм 2 . Это проницаемость породы, при фильтрации через образец которой площадью 1 м 2 , длиной 1 м и перепаде давления 0,1 МПа расход жидкости вязкостью 1 МПа-с составляет 1 м 3 /с. Проницаемость зависит от размера и конфигурации пор, плотности укладки, трещиноватости и взаимного расположения частиц породы. Проницаемость трещиноватых известняков колеблется от 0,005 до 0,02 мкм, а песчаников - от 0,05 до 3 мкм 2 .

Пористость и проницаемость нефтегазоносных пластов часто значительно изменяется в одном и том же пласте. Величина пористости и проницаемости в значительной степени влияет на конечное нефтеизвлечение. В процессе разработки нефтяных месторождений с целью увеличения пористости и проницаемости проводят различные геолого-технические мероприятия, такие как кислотные обработки, гидроразрыв пласта, щелевая разгрузка, обработка пласта оксидатом и т.д.

Определение пористости и проницаемости нефтесодержа-щих пород проводят по материалам геофизических исследований, образцам керна, отбираемого в процессе бурения, и по результатам испытания скважин на приток. По проницаемости и пористости, согласно А.А. Ханину (таблица 6), выделяются шесть классов коллекторов.

Удержание скоплений нефти и газа в горных породах невозможно, если они не будут перекрыты непроницаемыми породами, которые называют покрышками. В качестве покрышек могут быть глины, соли, гипсы и ангидриды.

Таблица 6

№ п/п Название породы по преобладанию гранулометрической фракции Пористость эффективная, % Проницаемость по газу, мкм 2 Оценка коллектора по проницаемости и емкости Класс колле ктора
Песчаник средне-зернистый 16,5 >1 очень высокая I
Алевролит мелкозернистый >1 очень высокая I
Песчаник средне-зернистый 15-16,5 >1 высокая II
Алевролит мелкозернистый 26,5-29 0,5-1 высокая II
Песчаник средне-зернистый 11-15 0,1-0,5 средняя Ш
Алевролит мелкозернистый 20,5-26,5 0,1-0,5 средняя III
Песчаник средне-зернистый 5,8-11 0,01-0,1 пониженная IV
Алевролит мелкозернистый 12-20,5 0,01-0,1 пониженная rv
Песчаник средне-зернистый 0,5-5,8 0,001-0,01 низкая V
Алевролит мелкозернистый 3,6-12 0,001-0,01 низкая V
Песчаник средне-зернистый 0,5 < 0,001 VI
Песчаник мелкозернистый < 0,001 Коллектор не имеет промышленного значения VI
Алевролит крупнозернистый 3,3 <0,001 Коллектор не имеет промышленного значения VI
Алевролит мелкозернистый 3,6 < 0,001 Коллектор не имеет промышленного значения VI

Покрышки различают по характеру распространения, толщине, однородности сложения, плотности, проницаемости, минеральному составу. Различают региональные, субрегиональные, зональные и локальные покрышки.

Таблица 7.

Классификация покрышек по Э.А. Бакирову

№ п/п Наименование покрышек Признак подразделения
По площади распространения
Региональные Распространены в пределах нефтегазоносной провинции или большей ее части
Субрегиональные Распространены в пределах нефтегазоносной области или большей ее части
Зональные Распространены в пределах зоны или района нефтегазонакопления
Локальные Распространены в пределах отдельных ме-стоскоплений
По состоянию с этажами нефтегазоносности
Межэтажные Перекрывают этаж нефтегазоносности в моноэтажных местоскоплениях или разделяют их в полиэтажных местоскоплениях
Внутриэтажные Разделяют продуктивные горизонты внутри этажа нефтегазоносности
По литологическому составу
Однородные (глинистые, карбонатные, галогенные) Состоят из пород одного литологического состава
Неоднородные: смешанные (песчано-глинистые; глинисто-карбонатные; терри-генно-галогенные и другие) Состоят из пород различного литологического состава, не имеющих четко выраженной слоистости
Расслоенные Состоят из чередования прослоев различных литологических разностей пород

Региональные покрышки имеют площадное распространение, характеризуются литологической выдержанностью и значи-

тельной толщиной. Они наблюдаются в пределах отдельных регионов (Волго-Уральская, Западно-Сибирская провинция и т.д.)

Зональные покрышки выдержаны в пределах отдельной зоны поднятий, по площади распространения они меньше региональных. Локальные покрышки встречаются в пределах место-скопления и обеспечивают сохранность отдельных залежей нефти и газа.

Большую роль в экранирующих свойствах покрышек играет степень их однородности. Наличие прослоев песчаников и алевролитов ухудшает свойство покрышек.

Чаще всего встречаются глинистые покрышки, обладающие хорошими экранирующими свойствами, а также каменная соль и т.д. Чем больше толщина покрышки, тем значительно выше ее изолирующие свойства.

Смачиваемость твердого тела жидкостью - это способность жидкости растекаться по поверхности твердого тела под влиянием поверхностно-молекулярных сил.

Контур капли на поверхности твердого тела, по которому происходит соприкосновение трех фаз - твердой, жидкой и газообразной, называется периметром смачивания. Поверхности по-ровых каналов пористых сред характеризуются значительной неоднородностью по смачиваемости. В этой связи о смачиваемости породы в целом различными жидкостями можно говорить лишь как об осредненном показателе, характеризующем лишь соотношение и геометрию участков с различной степенью смачиваемости.

Осредненную избирательную смачиваемость горной породы пластовыми жидкостями можно оценить по скорости впитывания воды в нефтенасыщенный керн. В этом случае измеряется лишь относительная смачиваемость породы (относительно смачивае-

мости другого образца породы, свойства поверхности которого считаются известными). Это связано с зависимостью скорости впитывания воды в пористую среду не только от величины углов смачивания, но и от многочисленных свойств породы, учет влияния которых затруднен.

Мерой смачивания твердого тела жидкостью служит краевой угол смачивания в, образованный поверхностью твердого тела и касательной к поверхности капли в точке ее соприкосновения с телом (рис. 7).

Рис. 7. Различные случаи смачивания твердого тела жидкостью: жидкость смачивает твердое тело (а); промежуточное состояние (б); жидкость не смачивает твердое тело (в); 1 - жидкость; 2 - воздух; 3 - твердое тело

Если краевой угол в < 90°, то жидкость смачивает твердую поверхность; если угол #>90°, то жидкость не смачивает твердую поверхность; если угол 0 = 90°, то жидкость находится в промежуточном состоянии.

Смачиваемая водой поверхность твердого тела, для которой в < 90°, называется гидрофильной. Не смачиваемая водой поверхность твердого тела, для которой в > 90°, называется гидрофобной. Смачивание происходит в результате проявления молекулярных сил, действующих на разделе трех фаз: твердой - 3, газообразной - 2, жидкой - 1. По способности жидкости смачивать породу судят о величине поверхностного натяжения в системе порода-жидкость-газ или порода-жидкость-жидкость.

При равновесии сил, приложенных к единице длины периметра смачивания, будем иметь

где Gj_ 2 , Gj_ 3 и G 2 _ 3 - поверхностные натяжения на границе фаз 1-2, 1-3, 2-3.

Горные породы, способные вмещать нефть, газ, воду и отдавать их при разработке, называются коллекторами. Большинство пород-коллекторов имеет осадочное происхождение. Нефть и газ содержатся в терригенных коллекторах, таких как пески, песчаники, алевролиты, и в карбонатных коллекторах - известняки, доломиты, мел.

Породы-коллектора должны обладать емкостью (рис. 8), т.е. системой пор (пустот), трещин и каверн.

Рис. 8. Поровое пространство в горной породе: 1 - минеральные зерна; 2 - поровое пространство породы, заполненное жидкостью или газом

Но не все породы, обладающие емкостью, являются проницаемыми для нефти и газа, т.е. коллекторами. Поэтому важно знать не только пористость коллекторов, но и проницаемость. Проницаемость горных пород зависит от поперечных (к направлению движения углеводородов) размеров пустот в породе.

Принято подразделять коллекторы на три типа: гранулярные, или поровые (только обломочные горные породы), трещинные (любые горные породы) и каверновые (только карбонатные породы).

Емкость перового коллектора называется пористостью. Для характеристики пористости применяется коэффициент пористости, который показывает, какую часть от всего объема горной породы составляют поры. По размерам поры делятся на сверхкапиллярные (более 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (менее 0,2 мкм).

Нефть, газ и вода в сверхкапиллярных порах свободно перемещаются под действием гравитационных сил. В капиллярных порах движение нефти, газа и воды затруднено вследствие проявления сил молекулярного сцепления. В субкапиллярных порах движение нефти, газа и воды не происходит. В пласте движение нефти, газа и воды происходит по сообщающимся каналам размером более 0,2 мкм. Пористость подразделяют на общую, открытую и эффективную.

Общая пористость - это объем всех пор в породе. Коэффициент общей пористости представляется отношением объема всех пор Vj к объему образца породы V 2:

которые сообщаются между собой. Открытая пористость характеризуется коэффициентом открытой пористости £ no как отношение суммарного объема открытых пор V 0 к объему образца породы V 2 ".

Существует также понятие эффективной пористости, которая определяется наличием пор в породе, из которых нефть и газ могут быть извлечены при разработке. Коэффициент эффективной пористости К П ^ равен отношению объема пор У эф, через ко-

торые возможно движение нефти, газа и воды при определенных температуре и давлении, к объему образца породы V 2:

коэффициент пористости горных пород составляет от 17-25% до 40%.

Важным показателем, характеризующим свойства горной породы пропускать нефть, газ и воду, является проницаемость. Единица проницаемости 1 мкм 2 . Это проницаемость породы, при фильтрации через образец которой площадью 1 м 2 , длиной 1 м и перепаде давления 0,1 МПа расход жидкости вязкостью 1 МПа-с составляет 1 м 3 /с. Проницаемость зависит от размера и конфигурации пор, плотности укладки, трещиноватости и взаимного расположения частиц породы. Проницаемость трещиноватых известняков колеблется от 0,005 до 0,02 мкм, а песчаников - от 0,05 до 3 мкм 2 .

Пористость и проницаемость нефтегазоносных пластов часто значительно изменяется в одном и том же пласте. Величина пористости и проницаемости в значительной степени влияет на конечное нефтеизвлечение. В процессе разработки нефтяных месторождений с целью увеличения пористости и проницаемости проводят различные геолого-технические мероприятия, такие как кислотные обработки, гидроразрыв пласта, щелевая разгрузка, обработка пласта оксидатом и т.д.

Определение пористости и проницаемости нефтесодержа-щих пород проводят по материалам геофизических исследований, образцам керна, отбираемого в процессе бурения, и по результатам испытания скважин на приток. По проницаемости и пористости, согласно А.А. Ханину (таблица 6), выделяются шесть классов коллекторов.

Удержание скоплений нефти и газа в горных породах невозможно, если они не будут перекрыты непроницаемыми породами, которые называют покрышками. В качестве покрышек могут быть глины, соли, гипсы и ангидриды.

Таблица 6

№ п/п Название породы по преобладанию гранулометрической фракции Пористость эффективная, % Проницаемость по газу, мкм 2 Оценка коллектора по проницаемости и емкости Класс колле ктора
Песчаник средне-зернистый 16,5 >1 очень высокая I
Алевролит мелкозернистый >1 очень высокая I
Песчаник средне-зернистый 15-16,5 >1 высокая II
Алевролит мелкозернистый 26,5-29 0,5-1 высокая II
Песчаник средне-зернистый 11-15 0,1-0,5 средняя Ш
Алевролит мелкозернистый 20,5-26,5 0,1-0,5 средняя III
Песчаник средне-зернистый 5,8-11 0,01-0,1 пониженная IV
Алевролит мелкозернистый 12-20,5 0,01-0,1 пониженная rv
Песчаник средне-зернистый 0,5-5,8 0,001-0,01 низкая V
Алевролит мелкозернистый 3,6-12 0,001-0,01 низкая V
Песчаник средне-зернистый 0,5 < 0,001 VI
Песчаник мелкозернистый < 0,001 Коллектор не имеет промышленного значения VI
Алевролит крупнозернистый 3,3 <0,001 Коллектор не имеет промышленного значения VI
Алевролит мелкозернистый 3,6 < 0,001 Коллектор не имеет промышленного значения VI

Покрышки различают по характеру распространения, толщине, однородности сложения, плотности, проницаемости, минеральному составу. Различают региональные, субрегиональные, зональные и локальные покрышки.

Таблица 7.

Классификация покрышек по Э.А. Бакирову

№ п/п Наименование покрышек Признак подразделения
По площади распространения
Региональные Распространены в пределах нефтегазоносной провинции или большей ее части
Субрегиональные Распространены в пределах нефтегазоносной области или большей ее части
Зональные Распространены в пределах зоны или района нефтегазонакопления
Локальные Распространены в пределах отдельных ме-стоскоплений
По состоянию с этажами нефтегазоносности
Межэтажные Перекрывают этаж нефтегазоносности в моноэтажных местоскоплениях или разделяют их в полиэтажных местоскоплениях
Внутриэтажные Разделяют продуктивные горизонты внутри этажа нефтегазоносности
По литологическому составу
Однородные (глинистые, карбонатные, галогенные) Состоят из пород одного литологического состава
Неоднородные: смешанные (песчано-глинистые; глинисто-карбонатные; терри-генно-галогенные и другие) Состоят из пород различного литологического состава, не имеющих четко выраженной слоистости
Расслоенные Состоят из чередования прослоев различных литологических разностей пород

Региональные покрышки имеют площадное распространение, характеризуются литологической выдержанностью и значи-

тельной толщиной. Они наблюдаются в пределах отдельных регионов (Волго-Уральская, Западно-Сибирская провинция и т.д.)

Зональные покрышки выдержаны в пределах отдельной зоны поднятий, по площади распространения они меньше региональных. Локальные покрышки встречаются в пределах место-скопления и обеспечивают сохранность отдельных залежей нефти и газа.

Большую роль в экранирующих свойствах покрышек играет степень их однородности. Наличие прослоев песчаников и алевролитов ухудшает свойство покрышек.

Чаще всего встречаются глинистые покрышки, обладающие хорошими экранирующими свойствами, а также каменная соль и т.д. Чем больше толщина покрышки, тем значительно выше ее изолирующие свойства.

Проявление поверхностного натяжения можно обнаружить, наблюдая явления, происходящие на границе раздела твердого тела с жидкостью.

Если при соприкосновении жидкости с твердым телом взаимодействие между их молекулами сильнее, чем взаимодействие между молекулами в самой жидкости, то жидкость стремится увеличить поверхность соприкосновения и растечется по твердому телу. В этом случае говорят, что жидкость смачивает твердое тело (вода на стекле, ртуть на железе). Если взаимодействие между молекулами твердого тела и молекулами жидкости слабее, чем между молекулами самой жидкости, то жидкость будет стремиться сократить поверхность соприкосновения с твердым телом. В этом случае говорят, что жидкость не смачивает твердое тело (вода на парафине, ртуть на стекле).

Рассмотрим каплю жидкости на поверхности твердого тела. Форма капли устанавливается под влиянием трех сред: жидкости Ж , твердого тела Т , воздуха или газа Г . Эти три среды имеют общую границу – окружность, ограничивающую каплю. К линии соприкосновения трех сред приложены три силы поверхностного натяжения, которые направлены по касательной внутрь поверхности соприкосновения соответствующих двух сред. Покажем их направление в точке О – точке пересечения линии соприкосновения трех сред с плоскостью чертежа (рис. 12.4.1 и 12.4.2).

Эти силы, отнесенные к единице длины линии соприкосновения, равны соответствующим поверхностным натяжениям. Угол между касательными к поверхности жидкости и твердого тела называют краевым углом . Условием равновесия капли (рис. 12.4.1) является равенство нулю проекций сил поверхностного натяжения на направление касательной к поверхности твердого тела:

Из этого равенства вытекает, что краевой угол может быть острым или тупым в зависимости от значений и . Если , то и угол – острый, т.е. жидкость смачивает твердую поверхность. Если , то и угол – тупой, т.е. жидкость не смачивает твердую поверхность.

Краевой угол должен удовлетворять условию

Если это условие не выполняется, то капля жидкости ни при каких условиях не может находиться в равновесии. Если , то жидкость растекается по поверхности твердого тела, покрывая его тонкой пленкой (керосин на поверхности стекла), – имеет место полное смачивание. Если , то жидкость стягивается в шаровую каплю (роса на поверхности листа дерева).

12.5. Капиллярные явления

Поверхность смачивающей жидкости, находящейся в узкой трубочке (капилляре), принимает вогнутую форму, а не смачивающей – выпуклую. Такие изогнутые поверхности жидкости называются менисками . Пусть капилляр в виде цилиндрической трубки с радиусом канала r погружен одним концом в смачивающую его стенки жидкость (рис. 12.5.1). Мениск в нем будет иметь сферическую форму (R – радиус сферы). Под мениском давление жидкости будет на меньше, чем в широком сосуде, где поверхность жидкости практически плоская. Поэтому в капилляре жидкость поднимается на высоту h , при которой вес столба жидкости в нем уравновесит отрицательное дополнительное давление:



где – плотность жидкости. Учитывая, что , получим

Таким образом, высота поднятия смачивающей жидкости в капилляре тем больше, чем меньше его радиус. Эта же формула позволяет определить и глубину опускания в капилляре несмачивающей жидкости.


Пример 12.5.1 . В воду опущена стеклянная трубка с диаметром внутреннего канала, равным 1 мм. Найти массу воды, вошедшей в трубку.

Решение:

Смачивание - это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой.

Смачивание бывает двух видов:

    Иммерсионное(вся поверхность твёрдого тела контактирует с жидкостью)

    Контактное(состоит из 3х фаз - твердая, жидкая, газообразная)

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока(2008) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности

(лакокрасочная, фармацевтическая, косметическая и т.д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

При соприкосновении жидкости с поверхностью твердого тела возможны два случая: жидкость смачивает твердое тело и не смачивает его. Если, например, капли ртути поместить на поверхность чистого железа и на чистое стекло, то на поверхности железа они будут растекаться, а на поверхности стекла иметь форму, близкую к шарообразной.

Если силы взаимодействия молекул твердого тела и молекул жидкости больше сил взаимодействия между молекулами жидкости, то жидкость смачивает твердое тело (ртуть-железо). В другом случае жидкость не смачивает твердое тело (ртуть-железо).

Искривлённая поверхность жидкости в узких цилиндрических трубках или около стенок сосуда называется мениском. Поверхность смачивающей жидкости вблизи твердого тела поднимается, а мениск – вогнутый (рис.49.1,а).У несмачивающей жидкости ее поверхность вблизи твердого тела несколько опускается, и мениск – выпуклый (рис.49.1,б).

Рисунок 49.1

Определить, смачивающей или несмачивающей по отношению к твердому телу является жидкость, можно пол краевому углу (угол между поверхностью твердого тела и касательной к поверхности жидкости в точке М).

Для жидкости, смачивающей поверхность твердого тела, краевой угол острый (< π/2); чем лучше смачивание, тем меньше. Для полного смачивания= 0. Для несмачивающих жидкостей краевой угол изменяется в пределах π/2 << π; при полном не смачивании= π.

У смачивающей жидкости мениск вогнутый, у несмачивающей – выпуклый.

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности (лакокрасочная, фармацевтическая, косметическая и т.д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

Смачиваемость воды.

Это свойство очень явственно проявляется и в способности воды «прилипать» ко многим предметам, то есть смачивать их. При изучении этого явления установили, что все вещества, которые легко смачиваются водой (глина, песок, стекло, бумага и др.), непременно имеют в своем составе атомы кислорода. Для объяснения природы смачивания этот факт оказался ключевым: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовывать дополнительные водородные связи с «посторонними» атомами кислорода. Благодаря поверхностному натяжению и способности к смачиванию, вода может подниматься в узких вертикальных каналах на высоту большую чем та, которая допускается силой тяжести, то есть вода обладает свойством капиллярности.

На границе раздела жидкости с твердым телом возникают явления смачивания или несмачивания, обусловленные взаимодействием молекул жидкости с молекулами твердого тела:


Рис.1 Явления смачивания (а) и несмачивания (б) жидкостью поверхности твердого тела (— краевой угол)

Так как явления смачивания и несмачивания определяются относительными свойствами веществ жидкости и твердого тела, одна и та же жидкость может быть смачивающей для одного твердого тела и несмачивающей для другого. Например, вода смачивает стекло и не смачивает парафин.

Количественной мерой смачивания является краевой угол угол, образуемый поверхностью твердого тела и касательной, проведенной к поверхности жидкости в точке соприкосновения (жидкость находится внутри угла).

При смачивании и чем меньше угол тем сильнее смачивание. Если краевой угол равен нулю, смачивание называют полным или идеальным . К случаю идеального смачивания можно приближенно отнести растекание спирта по чистой поверхности стекла. В этом случае жидкость растекается по поверхности твердого тела до тех пор, пока не покроет всю поверхность.

При несмачивании и чем угол , тем сильнее несмачивание. При значении краевого угла наблюдается полное несмачивание. В этом случае жидкость не прилипает к поверхности твердого тела и легко скатывается с нее. Подобное явление можно наблюдать, когда мы пытаемся вымыть жирную поверхность холодной водой. Моющие свойства мыла и синтетических порошков объясняются тем, что мыльный раствор имеет меньшее поверхностное натяжение, чем вода. Большое поверхностное натяжение воды мешает ей проникать в мелкие поры и промежутки между волокнами ткани.

Явления смачивания и несмачивания играют важную роль в жизни человека. При таких производственных процессах, как склеивание, покраска, пайка очень важно обеспечить смачивание поверхностей. В то время, как обеспечение несмачивания очень важно при создании гидроизоляции, синтезе непромокаемых материалов. В медицине явления смачивания важны для обеспечения движения крови по капиллярам, дыхания и других биологических процессов.

Явления смачивания и несмачивания ярко проявляются в узких трубках - капиллярах .

Капиллярные явления

ОПРЕДЕЛЕНИЕ

Капиллярные явления - это подъем или опускание жидкости в капиллярах по сравнению с уровнем жидкости в широких трубках.

Смачивающая жидкость поднимается по капилляру. Жидкость, не смачивающая стенки сосуда, опускается в капилляре.

Высота h поднятия жидкости по капилляру определяется соотношением:

где коэффициент поверхностного натяжения жидкости; плотность жидкости; радиус капилляра, ускорение свободного падения.

Глубина , на которую опускается жидкость в капилляре, вычисляется по той же формуле.

ОПРЕДЕЛЕНИЕ

Изогнутую поверхность жидкости называют мениском .

Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в капилляре поднимается до тех пор. пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, это приводит к опусканию жидкости в капилляре.

Капиллярные явления мы можем наблюдать и в природе, и в быту. Например, почва имеет рыхлое строение и между ее отдельными частицами находятся промежутки, представляющие собой капилляры. При поливе по капиллярам вода поднимается к корневой системе растений, снабжая их влагой. Также находящаяся в почве вода, поднимаясь по капиллярам. испаряется. Чтобы уменьшить эффективность испарения, тем самым сократив потери влаги, почву разрыхляют, разрушая капилляры. В быту капиллярные явления используются при промокании влажной поверхности бумажным полотенцем или салфеткой.

Примеры решения задач

ПРИМЕР 1

Задание В капиллярной трубке радиусом 0,5 мм жидкость поднялась на 11 мм. Найти плотность данной жидкости, если ее коэффициент поверхностного натяжения .
Решение

откуда плотность жидкости:

Переведем единицы в систему СИ: радиус трубки ; высота поднятия жидкости ; коэффициент поверхностного натяжения жидкости .

Ускорение свободного падения .

Вычислим:

Ответ Плотность жидкости

ПРИМЕР 2

Задание Найти массу воды, поднявшейся по капиллярной трубке диаметром 0,5 мм.
Решение Высота поднятия жидкости по капилляру определяется формулой:

Плотность жидкости:

Объем столба жидкости, поднявшейся по капилляру, считаем как объем цилиндра с высотой и площадью основания :

подставив соотношение для объема столба жидкости в формулу для плотности жидкости, получим:

С учетом последнего соотношения, а также того, что радиус капилляра , высота поднятия жидкости по капилляру:

Из последнего соотношения находим массу жидкости:

Переведем единицы в систему СИ: диаметр трубки .

Ускорение свободного падения .

Коэффициент поверхностного натяжения воды .

Вычислим:

Ответ Масса воды, поднявшейся по капиллярной трубке кг.