Какие координаты у. Cистемы координат, применяемые в топографии и геодезии. Понятия астрономической и геодезической системы координат и их различия

Пойдем прямым логическим путем, не отвлекаясь на многие современные международные и отечественные научные термины. Систему координат можно изобразить как некую систему отсчета ориентированную на плоскости двумя направлениями, а в пространстве тремя. Если вспомнить математическую систему, то она представлена двумя взаимно перпендикулярными направлениями, имеющими названия осей абсцисс (X) и ординат (Y). Ориентированы они в горизонтальном и вертикальном направлениях соответственно. Пересечение этих линий является началом координат с нулевыми значениями в абсолютной величине. А местоположение точек на плоскости определяется при помощи двух координат X и Y. В геодезии ориентирование осей на плоскости отличается от математики. Плоскостная прямоугольная система определена осью X в вертикальном положении (в направлении на север) и осью Y в горизонтальном (в направлении на восток).

Классификация систем координат

К полярным системам можно отнести географическую, астрономическую и геодезическую, геоцентрические и топоцентрические системы.

Географическая система координат

Замкнутая поверхность внешнего контура Земли представлена сфероидной геометрической формой. За основные направления ориентирования на ней можно принять дуги на поверхности шара. На упрощенно представленном уменьшенном макете нашей планеты в виде глобуса (фигура земли) можно зрительно увидеть принятые линии отсчета в виде Гринвичского меридиана и экваториальной линии.

В этом примере выражена общепринятая во всем мире именно пространственная система географических координат. В ней введены понятия долготы и широты. Имея градусные единицы измерения, они представляют угловую величину. Многим знакомы их определения. Следует напомнить, что географическая долгота конкретной точки представляет угол между двумя плоскостями, проходящими через нулевой (Гринвичский) меридиан и меридиан в определяемой точке расположения. Под географической широтой точки принят угол, образующийся между отвесной линией (или нормалью) к ней и плоскостью экватора.

Понятия астрономической и геодезической системы координат и их различия

Географическая система условно объединяет астрономическую и геодезическую системы. Для того чтобы было понятно какие все-таки существуют различия обратите внимание на определения геодезических и астрономических координат (долготы, широты, высоты). В астрономической системе широта рассматривается как угол между экваториальной плоскостью и отвесной линией в точке определения. А сама форма Земли в ней рассматривается как условный геоид, математически приближенно приравненный к сфере. В геодезической системе широта образовывается нормалью к поверхности земного эллипсоида в конкретной точке и плоскостью экватора. Третьи координаты в этих системах дают окончательное представление в их различиях. Астрономическая (ортометрическая) высота представляет собой превышение по отвесной линии между фактической и точкой на поверхности уровенного геоида. Геодезической высотой считается расстояние по нормали от поверхности эллипсоида до точки вычисления.

Система плоских прямоугольных систем координат Гаусса-Крюгера

Каждая система координат имеет свое теоретическое научное и практическое экономическое применение, как в глобальном, так и региональном масштабах. В некоторых конкретных случаях возможно использование референцных, местных и условных систем координат, но которые через математические расчеты и вычисления все равно могут быть объединены между собой.

Геодезическая прямоугольная плоская система координат является проекцией отдельных шестиградусных зон эллипсоида. Вписав эту фигуру внутрь горизонтально расположенного цилиндра, каждая зона отдельно проецируется на внутреннюю цилиндрическую поверхность. Зоны такого сфероида ограничиваются меридианами с шагом в шесть градусов. При развертывании на плоскости получается проекция, которая имеет название в честь немецких ученых её разработавших Гаусса-Крюгера. В таком способе проецирования углы между любыми направлениями сохраняют свои величины. Поэтому иногда ее называют еще равноугольной. Ось абсцисс в зоне проходит по центру, через условный осевой меридиан (ось X), а ось ординат по линии экватора (ось Y). Длины линий вдоль осевого меридиана передается без искажений, а вдоль экваториальной линии с искажениями к краям зоны.

Полярная система координат

Кроме выше описанной прямоугольной системы координат следует отметить наличие и использование в решении геодезических задач плоской полярной системы координат. За исходное отсчетное направление в ней применяется ось северного (полярного) направления, откуда и название. Для определения местоположения точек на плоскости используют полярный (дирекционный) угол и радиус-вектор (горизонтальное проложение) до точки. Напомним, что дирекционным углом считается угол, отсчитываемый от исходного (северного) направления до определяемого. Радиус-вектор выражается в определении горизонтального проложения. К пространственной полярной системе добавляется геодезические измерения вертикального угла и наклонного расстояния для определения 3D-положения точек. Этот способ практически ежедневно применяется в тригонометрическом нивелировании , топографической съемке и для развития геодезических сетей .

Геоцентрические и топоцентрические системы координат

По такому же полярному методу частично устроены и спутниковые геоцентрическая и топоцентрическая системы координат, с той лишь разницей, что основные оси трехмерного пространства (X, Y, Z) имеют отличные начала и направления. В геоцентрической системе началом координат является центр масс Земли. Ось X имеет направление по Гринвичскому меридиану к экватору. Ось Y располагают в прямоугольном положении на восток от X. Ось Z изначально имеет полярное направление по малой оси эллипсоида. Координатами в ней считаются:

  • в экваториальной плоскости геоцентрическое прямое восхождение спутника
  • в меридианной плоскости геоцентрическое склонение спутника
  • геоцентрический радиус-вектор расстояние от центра тяжести Земли до спутника.

При наблюдении за движением спутников из точки стояния на земной поверхности используют топоцентрическую систему, оси координат которой расположены параллельно осям геоцентрической системы, а ее началом считается пункт наблюдения. Координаты в такой системе:

  • топоцентрическое прямое восхождение спутника
  • топоцентрическое склонение спутника
  • топоцентрический радиус-вектор спутника
  • геоцентрический радиус вектор в точке наблюдений.

В современные спутниковые глобальные системы отсчета WGS-84 , ПЗ-90 входят не только координаты, но и другие параметры и характеристики важные для геодезических измерений, наблюдений и навигации. К ним относятся геодезические и другие константы:

  • исходные геодезические даты
  • данные земного эллипсоида
  • модель геоида
  • модель гравитационного поля
  • значения величины гравитационной постоянной
  • значение скорости света и другие.

ВВЕДЕНИЕ

Координаты — это величины, определяющие положение любой точки на поверхности или в пространстве относительно принятой системы координат.
Система координат устанавливает начальные (исходные) точки, поверхности или линии отсчета необходимых величин — начало отсчета координат, единицы их исчисления. В топографии и геодезии наибольшее применение получили системы географических, прямоугольных и полярных координат.
Система географических координат применяется для определения положения точек Земли на эллипсоиде или шаре. Исходными плоскостями в этой системе являются плоскости начального меридиана и экватора, а координатами — угловые величины: долгота и широта точки.
Из первой темы известно, что меридиан - это линия сечения эллипсоида плоскостью проходящей через данную точку и полярную ось вращения Земли.
Параллелью называют линию сечения эллипсоида плоскостью, проходящей через данную точку и перпендикулярную земной оси РР". Параллель, проходящая через центр эллипсоида, называется экватором.
Географические координаты могут быть получены на основании астрономических наблюдений или геодезических измерений. В первом случае их называют астрономическими , во втором - геодезическими . При астрономических наблюдениях проектирование точек на поверхность осуществляется отвесными линиями, при геодезических измерениях - нормалями, поэтому величины астрономических и геодезических географических координат несколько отличаются.
К системам координат, которые наиболее часто применяют в геодези, относятся геодезическая, астрономическая, сферическая, плоская прямоугольная, полярная и биполярная.

3.1. ГЕОДЕЗИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Геодезическими координатами называются угловые величины (широта и долгота), определяющие положение точек (объектов) на поверхности земного эллипсоида (референц-эллипсоида) относительно плоскости экватора и начального меридиана.
Геодезической широтой (В ) называется угол, заключенный между плоскостью экватора и нормалью к поверхности земного эллипсоида, проходящей через данную точку.

Рис. 3.1. Геодезическая система координат

Счет геодезических широт ведется от 0 до 90° к северу и к югу от экватора. Геодезические широты Северного полушария называются северными и имеют знак « + », а Южного — южными и имеют знак «—». Геодезическая широта измеряется центральным углом в плоскости меридиана.
Геодезическая широта (в градусах) показывает, насколько данная точка на земном эллипсоиде расположена севернее или южнее плоскости экватора.
Геодезическая широта для точек, расположенных на экваторе, будет равна 0°, а для точек, расположенных на полюсах ± 90°.
Геодезической долготой (L ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью геодезического меридиана, проходящего через данную точку.
В старину в отдельных государствах за начальный меридиан принимали меридиан, проходящий через свою главную обсерваторию. В настоящее время в Украине и в большинстве стран мира для единообразия в определении долгот условились начальным считать Гринвичский меридиан , проходящий через астрономическую обсерваторию в Гринвиче (близ Лондона). От этого меридиана ведется счет так называемого международного гринвичского времени.
Геодезическая долгота измеряется либо центральным углом в плоскости экватора или параллели, либо дугой экватора от начального (Гринвичского) меридиана до меридиана, проходящего через данную точку (М ), в пределах от 0 до 180° к востоку или к западу. Геодезические долготы для точек, расположенных к востоку от меридиана Гринвича до 180°, называются восточными и считаются положительными, а к западу - западными и считаются отрицательными.
Восточная долгота обозначается буквами (в.д .) или знаком « + », западная долгота — буквами (з.д .) или знаком « - ».
Геодезическая система координат, отнесенная к эллипсоиду Красовского, была разработана в 1942 - 1943 годах, поэтому она получила название системы координат 1942 года. Вместе с ней была принята Балтийская система высот, по которой ведется отсчет абсолютных высот относительно нуля Кронштадтского футштока (Футшток — специальная рейка с делениями).

3.2. АСТРОНОМИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Астрономические координаты определяют положение точки на поверхности геоида. Их можно получить путем астрономических измерений с помощью геодезических инструментов или путем математической обработки результатов геодезических измерений.
Астрономической широтой (φ ) называется угол, заключенный между плоскостью земного экватора и направлением отвесной линии в данной точке.
Астрономическая широта измеряется от 0 до 90° к северу и к югу от экватора. В Северном полушарии астрономические широты называются северными, а в Южном — южными.
Отвесная линия в общем случае не совпадает с направлением нормали к поверхности земного эллипсоида. Поскольку различные по плотности массы в теле Земли распределены неравномерно, то отклонение отвесной линии (силы тяжести) от нормали различное в разных точках Земли. Так, например, в районе Кавказа отклонения отвесных линий от нормалей достигают 35", а разность отклонений отвесных линий на противоположных берегах озера Байкал достигает 40". В среднем величина отклонений равна 4 - 5" (рис. 3.2).

Рис. 3.2. Астрономическая система координат

Астрономической долготой (λ) называется двугранный угол, заключенный между плоскостью начального астрономического меридиана и плоскостью астрономического меридиана, проходящего через данную точку .
Поскольку плоскость астрономического меридиана проходит через отвесную линию в данной точке на поверхности Земли, а плоскость геодезического меридиана проходит через нормаль к поверхности эллипсоида, следовательно, плоскости астрономического и геодезического меридианов не совпадают. В результате этого геодезическая широта, долгота и геодезический азимут в данной точке отличаются от астрономической широты, долготы, и астрономического (истинного) азимута. Эти расхождения будут увеличиваться там, где наблюдаются большие отклонения отвесной линии от нормали, а также в тех точках геоида, где его поверхность дальше удалена от поверхности эллипсоида.
Геодезическая и астрономическая системы координат различаются как две отдельные системы при определении местоположения объектов с точностью до 1" (в линейной величине до 20 - 30 м ). Зная астрономические координаты, можно вычислить геодезические координаты путем ввода поправок на уклонение отвесных линий от нормалей, определяемых астрономо-геодезическим методом или по специальным гравиметрическим картам.

3.3. СФЕРИЧЕСКАЯ СИСТЕМА КООРДИНАТ

При решении ряда геодезических задач и составлении карт мелких масштабов Землю принимают за сферу. Положение точек местности на сфере определяется сферическими координатами: сферической широтой и сферической долготой.
Сферическими координатами называются угловые величины (широта и долгота), определяющие положение точек местности на поверхности земной сферы относительно плоскости экватора и начального меридиана (рис. 3.2).
Сферической широтой (φ ) называется угол, заключенный между плоскостью экватора и направлением из центра земной сферы на данную точку. Сферическая широта измеряется центральным углом или дугой меридиана в тех же пределах, что и геодезическая широта - от 0 до 90° к северу и к югу от экватора. Сферические широты в Северном полушарии называются северными и обозначаются знаком «+», а в Южном - южными и обозначаются знаком «-».
Сферической долготой (λ ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью меридиана, проходящего через данную точку.
Сферическая долгота измеряется либо центральным углом в плоскости экватора или в плоскости параллели, либо дугой экватора или дугой параллели от началь-ного (Гринвичского) меридиана до меридиана, проходящего через данную точку в пределах от 0 до 180° к востоку и к западу.

Рис. 3.3. Сферическая система координат

Сферические долготы для точек, расположенных к востоку от Гринвичского меридиана до 180°, называются восточными и считаются положительными, а к западу — западными и считаются отрицательными. При решении некоторых практических задач сферическая долгота отсчитывается от 0 до 360° только к востоку от Гринвичского меридиана.
Все вычисления, связанные с автоматизированным определением координат, углов и расстояний, решаются на поверхности земной сферы с использованием формул сферической тригонометрии, поэтому поверхность земного эллипсоида проектируется на поверхность сферы.
В практике часто пользуются сферой радиусом R = 6371 км , поверхность которой равна поверхности эллипсоида. При этом максимальные погрешности в определении расстояний достигают 0,5% и углов не более 0,4°.
Длина дуги большого круга на сфере в 1секунду, равная 1852 м , называется морской милей .
Вышеназванные погрешности не позволяют реализовать точность современных средств автоматизированного определения координат. Поэтому в современных вычислителях с ЦВМ применяется формулы с учетом сжатия Земли. При этом максимальные искажения расстояний составляют 0,08% - 0,17%, а искажения углов практически отсутствуют.

3.4. ПОЛЯРНАЯ И БИПОЛЯРНАЯ СИСТЕМЫ КООРДИНАТ

Полярными координатами называются угловая и линейная величины, определяющие положение точки на плоскости относительно начала координат, принимаемого за полюс , и полярной оси . Местоположение любой точки определяется углом положения , отсчитанным от полярной оси до направления на определяемую точку, и расстоянием от полюса до этой точки (рис. 3.4).


Рис. 3.4. Полярная система координат

За полярную ось могут быть приняты: истинный или магнитный меридиан, вертикальная линия сетки и направление на любой ориентир.
При работе на местности за полярную ось принимают северное направление магнитного меридиана или направление на какой-нибудь ориентир с точки стояния.

Биполярными координатами называются две угловые или две линейные величины, определяющие местоположение точки на плоскости относительно двух исходных точек (полюсов). Положение любой точки на карте или на местности определяется двумя координатами. Этими координатами могут быть два угла положения либо два расстояния от полюсов до определяемой точки (рис. 3.5, 3.6).


Рис. 3.5. Определение места точки по двум дирекционным углам


Рис. 3.6. Определение места точки по двум дальностям

3.5. СИСТЕМА ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ

Плоскими прямоугольными геодезическими координатами (прямоугольными координатами) называются линейные величины — абсцисса и ордината,— определяющие положение точки на плоскости относительно исходных направлений.

Рис. 3.7. Система плоских прямоугольных координат

Исходными направлениями служат две взаимно перпендикулярные линии (рис. 3.7) с началом отсчета в точке их пересечения (О). Прямая XX является осью абсцисс, а прямая УУ, перпендикулярная к оси абсцисс, — осью ординат. В такой системе положение любой точки на плоскости определяется кратчайшим расстоянием до нее от осей координат. Так, положение точки А определяется длиной перпендикуляров ха и уа. Отрезок ха называется абсциссой точки А, а уа — ординатой. Выражаются абсциссы и ординаты в линейной мере (обычно в метрах).
В геодезии и топографии принята правая система прямоугольных координат: это отличает ее от левой системы координат, используемой в математике. Четверти системы координат (название которых определяется принятыми обозначениями стран света), нумеруются по ходу часовой стрелки. В такой системе упрощается измерение углов ориентирования.
Абсциссы точек, расположенных вверх от начала координат, считаются положительными, а вниз от нее — отрицательными.
Ординаты точек, расположенных вправо от начала координат, считаются положительными, а влево от нее — отрицательными (см. табл. 1.2).

Таблица 1.1

Четверти

Координаты

I
II
III
IV

Северо-восток (СВ)
Юго-восток (ЮВ)
Юго-запад (ЮЗ)
Северо-запад (СЗ)

+


+

+
+

Система плоских прямоугольных координат применяется на ограниченных участках земной поверхности, которые могут быть приняты за плоские.
Для небольших участков начало отсчета координат может быть в любой точке участка (система с условным началом координат). В государственной системе координат за ось ординат принимают линию экватора, за ось абсцисс — направление меридиана, который называется осевым (он совпадает с направлением одной из осей системы прямоугольных координат). При проведении работ на значительных по площади территориях осевыми выбирают несколько меридианов.

3.6. ОПРЕДЕЛЕНИЕ ГЕОДЕЗИЧЕСКИХ КООРДИНАТ ТОЧЕК ПО КАРТЕ

Топографические карты печатаются отдельными листами, размеры которых установлены для каждого масштаба. Боковыми рамками листов служат меридианы, а верхней и нижней рамками - параллели . (рис. 3.9). Следовательно, географические координаты можно определить по боковым рамкам топографической карты . На всех картах верхняя рамка всегда обращена на север.
Географическую широту и долготу подписывают в углах каждого листа карты. На картах Западного полушария в северо-западном углу рамки каждого листа правее значения долготы меридиана помещают надпись: «К западу от Гринвича».
На картах масштабов 1: 25 000 - 1: 200 000 стороны рамок разделены на отрезки, равные 1′ (одной минуте, рис. 3.8). Эти отрезки оттенены через один и разделены точками (кроме карты масштаба 1: 200 000) на части по 10" (десять секунд). На каждом листе карты масштабов 1: 50 000 и 1: 100 000 показывают, кроме того, пересечение среднего меридиана и средней параллели с оцифровкой в градусах и минутах, а по внутренней рамке - выходы минутных делений штрихами длиной 2 - 3 мм. Это позволяет при необходимости прочерчивать параллели и меридианы на карте, склеенной из нескольких листов.


Рис. 3.8. Боковые рамки карты

При составлении карт масштабов 1: 500 000 и 1: 1 000 000 на них наносят картографическую сетку параллелей и меридианов. Параллели проводят соответственно через 20′ и 40" (минут), а меридианы - через 30" и 1°.
Географические координаты точки определяют от ближайшей параллели и от ближайшего меридиана, широта и долгота которых известны. Например, для карты масштаба 1: 50 000 «ЗАГОРЯНИ» ближайшими параллелями будут параллели с широтами 54º40′ и 54º50′, а ближайшими меридианами будут меридиан с долготами 18º00′ и 18º15′ (рис. 3.10).


Рис. 3.9. Определение географических координат

Для определения широты заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайшую параллель (для нашей карты 54º40′);
  • не меняя раствор циркуля-измерителя установить его на боковую рамку с минутными и секундными делениями, одна ножка должна быть на южной параллели (для нашей карты 54º40′), а другая - между 10-секундными точками на рамке;
  • посчитать количество минут и секунд от южной параллели до второй ножки циркуля-измерителя;
  • добавить полученный результат к южной широте (для нашей карты 54º40′).

Для определения долготы заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайший меридиан (для нашей карты 18º00′);
  • не меняя раствор циркуля-измерителя установить его на ближайшую горизонтальную рамку с минутными и секундными делениями (для нашей карты нижнюю рамку), одна ножка должна быть на ближайшем меридиане (для нашей карты 18º00′), а другая - между 10-секундными точками на горизонтальной рамке;
  • посчитать количество минут и секунд от западного (левого) меридиана до второй ножки циркуля-измерителя;
  • добавить полученный результат к долготе западного меридиана (для нашей карты 18º00′).

Обратите внимание на то, что данный способ определения долготы заданной точки для карт масштаба 1:50 000 и мельче имеет погрешность за счет схождения меридианов, ограничивающих топографическую карту с востока и запада. Северная сторона рамки будет короче, чем южная. Следовательно, расхождения между измерениями долготы на северной и южной рамке могут отличаться на несколько секунд. Чтобы добиться высокой точности в результатах измерений необходимо определить долготу и по южной и по северной стороне рамки, а затем произвести интерполяцию.
Для повышения точности определения географических координат можно использовать графический метод . Для этого необходимо соединить прямыми линиями ближайшие к точке одноименные десятисекундные деления по широте к югу от точки и по долготе к западу от нее. Затем определить размеры отрезков по широте и долготе от прочерченных линий до положения точки и суммировать их соответственно с широтой и долготой прочерченных линий.
Точность определения географических координат по картам масштабов 1: 25 000 - 1: 200 000 составляет 2′′ и 10′′ соответственно.

Вопросы и задания для самоконтроля

  1. Какие плоскости в системе географических координат являются исходными?
  2. Дайте определения «геодезические координаты», «геодезическая широта», «геодезическая долгота».
  3. В каких пределах измеряется геодезическая широта и геодезическая долгота?
  4. Чему равна геодезическая широта точек, расположенных на экваторе и на южном полюсе?

Понятие о формах и размерах Земли.

Фигура земли формируется под действием сил внутреннего тяготения и центробежной силы. Принято считать что земля имеет две поверхности

физическую образованную твердой оболочкой земли и уровневую поверхность мирового океана мысленно продолженную под сушей.

Тело ограниченное уровненной поверхностью называется геоидом . Геоид имеет сложную форму и не выражается математическим способом.

В связи с этим для математической обработки результатов геодезических измерений и построений топокарт используют другую фигуру эллипсоид вращения.

Земной эллипсоид характеризуется размерами:

а – большой полуаси

б – малой полуаси

или полярным сжатием

Несмотря на то что поверхность геоида отклоняется или различается от поверхности эллипсоида на 105 м в практике инженерно геодезических работ принято считать одинаковыми.

И за уровненную поверхность принимается средний многолетний уровень балтийского моря.

Для различных расчетов используется радиус шара равновеликого эллипсоиду и равный R=6371,1 км

Понятие о географ. корд.

Широта, долгота. Минутная географич. рамка карты.

положение точки на земной поверхности в системе географических координат определяется двумя углами – широтой (φ) и долготой (λ).

СА 0 Ю – Гринвичский меридиан

СМ 0 Ю – меридиан проходящий через т М, координаты которой необходимо определить

МО – отвесная линия точки М

QQ 1 – плоскость экватора

В этой системе за координатную поверхность принимается шар, а за координатные линии – географич.(ист) меридианы и параллели.

Сечения поверхности шара плоскостями, проходящими через полярную ось вращения Земли называют меридианами . За начальный принят меридиан, проходящий через центр зала Гринвичской обсерватории вблизи Лондона.

Сечения поверхности шара плоскостями, перпендик. к оси вращ. Земли наз. параллелями . Параллель, плоскость которой проходит через центр шара O, наз. экватором .

Долгота –это двухгранный угол между нулевым меридианом и меридианом проходящим через точку. Она бывает западной и восточной.Измеряется в градусах. От 0 до 180

Широта –это угол между плоскостью экватора и параллелью проведённой через точку.1 градус-111 км. От 0 до 90

Прямоугольные координаты Х и У. Зональная система координат Гаусса-Крюгера.

Положение пунктов на физической поверхности Земли определяется в различных системах координат. Рассмотрим Прямоугольные местные координаты. Они являются производными от зональной системы координат Гаусса-Крюгера (см. п.7) и распространяются на небольшой по площади территории. Ось абсцисс совмещают с меридианом некоторой точки участка либо ориентируют параллельно основным осям инженерных сооружений. Координатные четверти нумеруют по часовой стрелке и именуют по сторонам света: I-СВ, II-ЮВ, III-ЮЗ, IV-СЗ.

4.1. ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ

В топографии наиболее широкое распространение получили прямоугольные координаты. Возьмем на плоскости две взаимно перпендикулярные линии - O Х и OY . Эти линии называют осями координат, а точка их пересечения (O ) - началом координат.

Рис. 4.1. Прямоугольные координаты

Положение любой точки на плоскости можно легко определить, если указать кратчайшие расстояния от осей координат до данной точки. Кратчайшими расстояниями являются перпендикуляры. Расстояния по перпендикулярам от осей координат до данной точки называют прямоугольными координатами этой точки. Отрезки, параллельные оси X , называют координатами х А , а параллельные оси Y - координатами у А .
Четверти прямоугольной системы координат нумеруются. Их счет идет по ходу часовой стрелки от положительного направления оси абсцисс - I, II, III, IV (рис. 4.1).
Прямоугольные координаты, о которых шла речь, применяют на плоскости. Отсюда они получили название плоских прямоугольных координат. Эту систему координат применяют на небольших участках местности, принимаемых за плоскость.

4.2. ЗОНАЛЬНАЯ СИСТЕМА ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА

При рассмотрении вопроса «Проекции топографических карт» было отмечено, что поверхность Земли проектируется на поверхность цилиндра, который касается поверхности Земли по осевому меридиану. При этом на цилиндр проектируется не вся поверхность Земли, а лишь часть ее, ограниченная 3° долготы на запад и 3° на восток от осевого меридиана. Поскольку каждая из проекций Гаусса передает на плоскость только фрагмент поверхности Земли, ограниченный меридианами через 6° долготы, то всего на поверхность Земли должно быть составлено 60 проекций (60 зон). В каждой из 60 проекций образуется отдельная система прямоугольных координат.
В каждой зоне осью X является средний (осевой) меридиан зоны, вынесенный западнее на 500 км от своего фактического положения, а осью Y - экватор (рис. 4.2).


Рис. 4.2. Система прямоугольных координат
на топографических картах

Пересечение вынесенного осевого меридиана с экватором будет началом координат: х = 0, у = 0 . Точка пересечения экватора и фактического осевого меридиана имеет координаты: х = 0, у = 500 км.
В каждой зоне имеется свое начало координат. Счет зон ведется от Гринвичского меридиана на восток. Первая шестиградусная зона расположена между Гринвичским меридианом и меридианом с восточной долготой 6º(осевой меридиан 3º). Вторая зона - 6º в.д. - 12º в.д (осевой меридиан 9º). Третья зона - 12º в.д. - 18º в.д. (осевой меридиан 15º). Четвертая зона - 18º в.д. - 24º в.д. (осевой меридиан 21º) и т.д.
Номер зоны обозначен в координате у первой цифрой. Например, запись у = 4 525 340 означает, что заданная точка находится в четвертой зоне (первая цифра) на расстоянии 525 340 м от осевого меридиана зоны, вынесенного западнее 500 км.

Чтобы определить номер зоны по географическим координатам, необходимо к долготе, выраженной в целых числах градусов, прибавить 6 и полученную сумму разделить на 6. В результате деления оставляем только целое число.

Пример. Определить номер зоны Гаусса для точки, имеющей восточную долготу 18º10".
Решение. К целому числу градусов долготы 18 прибавляем 6 и сумму делим на 6
(18 + 6) / 6 = 4.
Наша карта находится в четвертой зоне.

Затруднения при использовании зональной системы координат возникают в тех случаях, когда топографо-геодезические работы проводятся на приграничных участках, расположенных в двух соседних (смежных) зонах. Координатные линии таких зон располагаются под углом друг к другу (рис 4.3).

Для ликвидации возникающих осложнений введена полоса перекрытия зон , в которой координаты точек могут быть вычислены в двух смежных системах. Ширина полосы перекрытия 4°, по 2° в каждой зоне.

Дополнительная сетка на карте наносится лишь в виде выходов ее линий между минутной и внешней рамками. Оцифровка ее является продолжением оцифровки линий сетки смежной зоны. Линии дополнительной сетки подписывают за внешней рамкой листа . Следовательно, на листе карты, расположенном в восточной зоне, при соединении одноименных выходов дополнительной сетки получают километровую сетку западной зоны. Пользуясь этой сеткой, можно определить, например, прямоугольные координаты точки В в системе прямоугольных координат западной зоны, т. е. прямоугольные координаты точек А и В будут получены в одной системе координат западной зоны.

Рис. 4.3. Дополнительные километровые линии на границе зон

На карте масштаба 1:10 000 дополнительная сетка разбивается только на тех листах, у которых восточный или западный меридиан внутренней рамки (рамки трапеции) является границей зоны. На топографических планах дополнительная сетка не наносится.

4.3. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ С ПОМОЩЬЮ ЦИРКУЛЯ-ИЗМЕРИТЕЛЯ

Важным элементом топографической карты (плана) является прямоугольная сетка. На все листы данной 6-градусной зоны сетку наносят в виде рядов линий, параллельных осевому меридиану и экватору (рис. 4.2). Вертикальные линии сетки параллельны осевому меридиану зоны, а горизонтальные - экватору. Счет горизонтальных километровых линий ведется снизу вверх, а вертикальных - слева направо .

Интервалы между линиями на картах масштабов 1:200 000 - 1:50 000 составляют 2 см, 1:25 000 - 4 см, 1:10 000 - 10 см, что соответствует целому числу километров на местности. Поэтому прямоугольную сетку называют еще километровой , а ее линии - километровыми .
Километровые линии, ближайшие к углам рамки листа карты, подписывают полным числом километров, остальные - двумя последними цифрами. Надпись 60 65 (см. рис. 4.4) на одной из горизонтальных линий означает, что эта линия удалена oт экватора на 6065 км (к северу): надпись 43 07 у вертикальной линии означает, что она находится в четвертой зоне и удалена от начала счета ординат к востоку на 307 км. Если около вертикальной километровой линии записано трехзначное число мелкими цифрами, две первые обозначают номер зоны .

Пример. Надо определить по карте прямоугольные координаты точки местности, например, пункта государственной геодезической сети (ГГС) с отметкой 214,3 (рис. 4.4). Сначала записывают (в километрах) абсциссу южной стороны квадрата, в котором находится эта точка (т. е. 6065). Затем с помощью циркуля-измерителя и линейного масштаба определяют длину перпендикуляра Δх = 550 м , опушенного из заданной точки на эту линию. Полученную величину (в данном случае 550 м) добавляют к абсциссе линии. Число 6 065 550 есть абсцисса х пункта ГГС.
Ордината пункта ГГС равна ординате западной стороны того же квадрата (4307 км), сложенной с длиной перпендикуляра Δу = 250 м, измеренного по карте. Число 4 307 250 есть ордината того же пункта.
При отсутствии циркуля-измерителя расстояния измеряют линейкой или полоской бумаги .

х = 6065550, у = 4307250
Рис. 4.4. Определение прямоугольных координат с помощью линейного масштаба

4.4. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ С ПОМОЩЬЮ КООРДИНАТОМЕРА

Координатомер - небольшой угольник с двумя перпендикулярными сторонами. По внутренним ребрам линеек нанесены шкалы, длины которых равны длине стороны координатных клеток карты данного масштаба. Деления на координатомер переносят с линейного масштаба карты.
Горизонтальная шкала совмещается с нижней линией квадрата (в котором находится точка), а вертикальная шкала должна проходить через данную точку. По шкалам определяют расстояния от точки до километровых линий.


х А = 6135 350 у А = 5577 710
Рис. 4.5. Определение прямоугольных координат с помощью координатомера

4.5. НАНЕСЕНИЕ НА КАРТУ ТОЧЕК ПО ЗАДАННЫМ ПРЯМОУГОЛЬНЫМ КООРДИНАТАМ

Чтобы нанести на карту точку по заданным прямоугольным координатам, поступают следующим образом: в записи координат находят двузначные числа, которыми сокращенно обозначены линии прямоугольной сетки. По первому числу находят на карте горизонтальную линию сетки, по второму - вертикальную. Их пересечение образует юго-западный угол квадрата, в котором лежит искомая точка. На восточной и западной сторонах квадрата откладывают от его южной стороны два равных отрезка, соответствующих в масштабе карты числу метров в абсциссе х . Концы отрезков соединяют прямой линией и на ней от западной стороны квадрата откладывают в масштабе карты отрезок, соответствующий числу метров в ординате; конец этого отрезка является искомой точкой.

4.6. ВЫЧИСЛЕНИЕ ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ ГАУССА ПО ГЕОГРАФИЧЕСКИМ КООРДИНАТАМ

Плоские прямоугольные координаты Гаусса х и у весьма сложно связаны с географическими координатами φ (широта) и λ (долгота) точек земной поверхности. Предположим, что некоторая точка А имеет географические координаты φ и λ . Поскольку разность долгот граничных меридианов зоны равна 6°, то соответственно для каждой из зон можно получить долготы крайних меридианов: 1-я зона (0° - 6°), 2-я зона (6° - 12°), 3-я зона (12° - 18°) и т.д. Таким образом, по географической долготе точки А можно определить номер зоны, в которой эта точка находится. При этом долгота λ ос осевого меридиана зоны определится по формуле
λ ос = (6°n - 3°),
в которой n - номер зоны.

Для определения плоских прямоугольных координат х и у по географическим координатам φ и λ воспользуемся формулами, выведенными для референц-эллипсоида Красовского (референц-эллипсоид - фигура, максимально приближенная к фигуре Земли в той ее части, на которой находится данное государство, либо группа государств):

х = 6367558,4969 (φ рад ) − {a 0 − l 2 N}sin φ cos φ (4.1)
у (l) = lNcos φ (4.2)

В формулах (4.1) и (4.2) приняты следующие обозначения:
у(l) - расстояние от точки до осевого меридиана зоны;
l = (λ - λ ос ) - разность долгот определяемой точки и осевого меридиана зоны);
φ рад - широта точки, выраженная в радианной мере;
N = 6399698,902 - cos 2 φ;
а 0 = 32140,404 - cos 2 φ;
а 3 = (0,3333333 + 0,001123 cos 2 φ) cos 2 φ - 0,1666667;
а 4 = (0,25 + 0,00252 cos 2 φ) cos 2 φ - 0,04166;
а 5 = 0,0083 - cos 2 φ;
а 6 = (0,166 cos 2 φ - 0,084) cos 2 φ.
у" - расстояние от осевого меридиана отнесенного западнее 500 км.

По формуле (4.1) значение координаты у(l) получают относительно осевого меридиана зоны, т.е. оно может получиться со знаками «плюс» для восточной части зоны или «минус» - для западной части зоны. Для записи координаты y в зональной системе координат необходимо вычислить расстояние до точки от осевого меридиана зоны, отнесенного западнее на 500 км"в таблице) , а впереди полученного значения приписать номер зоны. Например, получено значение
у(l) = -303678,774 м в 47 зоне.
Тогда
у = 47 (500000,000 - 303678,774) = 47196321,226 м.
Для вычислений используем электронные таблицы MicrosoftXL .

Пример . Вычислить прямоугольные координаты точки, имеющей географические координаты:
φ = 47º02"15,0543" с.ш.; λ = 65º01"38,2456" в.д.

В таблицу MicrosoftXL вводим исходные данные и формулы (таб. 4.1).

Таблица 4.1.

D

E

F

Параметр

Вычисления

Град

φ (град)

D2+E2/60+F2/3600

φ (рад)

РАДИАНЫ(C3)

Cos 2 φ

№ зоны

ЦЕЛОЕ((D8+6)/6)

λос (град)

l (град)

D11+E11/60+F11/3600

l (рад)

РАДИАНЫ(C12)

6399698,902-((21562,267-
(108,973-0,612*C6^2)*C6^2))*C6^2

а 0

32140,404-((135,3302-
(0,7092-0,004*C6^2)*C6^2))*C6^2

а 4

=(0,25+0,00252*C6^2)*C6^2-0,04166

а 6

=(0,166*C6^2-0,084)*C6^2

а 3

=(0,3333333+0,001123*C6^2)*C6^2-0,1666667

а 5

0,0083-((0,1667-(0,1968+0,004*C6^2)*C6^2))*C6^2

6367558,4969*C4-(((C15-(((0,5+(C16+C17*C20)*C20))

*C20*C14)))*C5*C6)

=((1+(C18+C19*C20)*C20))*C13*C14*C6

ОКРУГЛ((500000+C23);3)

СЦЕПИТЬ(C9;C24)


Вид таблицы после вычислений (таб. 4.2).

Таблица 4.2.

Параметр

Вычисления

Град

φ (град, мин, сек)

φ (градусы)

φ (радианы)

Cos 2 φ

λ (град, мин, сек)

Номер зоны

λос (град)

l (мин, сек)

l (градусы)

l (радианы)

а 0

а 4

а 6

а 3

а 5


4.7. ВЫЧИСЛЕНИЕ ГЕОГРАФИЧЕСКИХ КООРДИНАТ ПО ПЛОСКИМ ПРЯМОУГОЛЬНЫМ КООРДИНАТАМ ГАУССА

Для решения данной задачи также используются формулы пересчета, полученные для референц-эллипсоида Красовского.
Предположим, что нам необходимо вычислить географические координаты φ и λ точки А по ее плоским прямоугольным координатам х и у , заданным в зональной системе координат. При этом значение координаты у записано с указанием номера зоны и с учетом переноса осевого меридиана зоны западнее на 500 км.
Предварительно по значению у находят номер зоны, в которой расположена определяемая точка, по номеру зоны определяют долготу λ o осевого меридиана и по расстоянию от точки до отнесенного на запад осевого меридиана находят расстояние у(l) от точки до осевого меридиана зоны (последнее может быть со знаком плюс или минус).
Значения географических координат φ и λ по плоским прямоугольным координатам х и у находят по формулам:
φ = φ х - z 2 b 2 ρ″ (4.3)
λ = λ 0 + l (4.4)
l = zρ″ (4.5)

В формулах (4.3) и (4.5) :
φ х ″= β″ +{50221746 + cos 2 β}10-10sinβcosβ ρ″;
β″ = (Х / 6367558,4969) ρ″; ρ″ = 206264,8062″ - число секунд в одном радиане
z = У(L) / (Nx сos φx);
N х = 6399698,902 - cos 2 φ х;
b 2 = (0,5 + 0,003369 cos 2 φ х) sin φ х cos φ х;
b 3 = 0,333333 - (0,166667 - 0,001123 cos2 φ х) cos2 φ х;
b 4 = 0,25 + (0,16161 + 0,00562 сos 2 φ х) cos 2 φ х;
b 5 = 0,2 - (0,1667 - 0,0088 сos 2 φ х) cos 2 φ х.

Для вычислений используем электронные таблицы MicrosoftXL .
Пример . Вычислить географические координаты точки по прямоугольным:
x = 5213504,619; y = 11654079,966.

В таблицу MicrosoftXL вводим исходные данные и формулы (таб. 4.3).

Таблица 4.3.

1

Параметр

Вычисление

Град.

Мин.

Сек.

2

1

х

5213504,619

2

у

11654079,966

4

3

№*зоны

ЕСЛИ(C3<1000000;
C3/100000;C3/1000000)

5

4

№ зоны

ЦЕЛОЕ(C4)

6

5

λоос

C5*6-3

7

6

у"

C3-C5*1000000

8

7

у(l)

C7-500000

9

8

ρ″

206264,8062

10

9

β"

C2/6367558,4969*C9

11

10

β рад

РАДИАНЫ(C10/3600)

12

11

β

ЦЕЛОЕ
(C10/3600)

ЦЕЛОЕ
((C10-D12*3600)/60)

C10-D12*
3600-E12*60

13

12

Sin β

SIN(C11)

14

13

Cos β

COS(C11)

15

14

Cos 2 β

C14^2

16

15

φ х "

C10+(((50221746+((293622+
(2350+22*C14^2)*C14^2))*C14^2)))
*10^-10*C13*C14*C9

17

16

φ х рад

РАДИАНЫ(C16/3600)

18

17

φ х

ЦЕЛОЕ
(C16/3600)

ЦЕЛОЕ
((C16-D18*3600)/60)

C16-D18*
3600-E18*60

19

18

Sin φ.

SIN(C17)

20

19

Cos φ х

COS(C17)

21

20

Cos 2 φ х

C20^2

22

21

N х

6399698,902-((21562,267-
(108,973-0,612*C21)*C21))*C21

23

22

Ν х Cosφ х

C22*C20

24

23

z

C8/(C22*C20)

25

24

z 2

C24^2

26

25

b 4

0,25+(0,16161+0,00562*C21)*C21

27

26

b 2

=(0,5+0,003369*C21)*C19*C20

28

27

b 3

0,333333-(0,166667-0,001123*C21)*C21

29

28

b 5

0,2-(0,1667-0,0088*C21)*C21

30

29

C16-((1-(C26-0,12
*C25)*C25))*C25*C27*C9

31

30

φ

=ЦЕЛОЕ
(C30/3600)

=ЦЕЛОЕ
((C30-D31*3600)/60)

=C30-D31*
3600-E31*60

32

31

l"

=((1-(C28-C29*C25)*C25))*C24*C9

33

32

l 0

=ЦЕЛОЕ
(C32/3600)

=ЦЕЛОЕ
((C32-D33*3600)/60)

=C32-D33*
3600-E33*60

34

33

λ

C6+D33


Вид таблицы после вычислений (таб. 4.4).

Таблица 4.4.

Параметр

Вычисление

Град.

Номер зоны *

Номер зоны

λоос (град)

у"

β рад

Cos 2 β

φ х "

φ х рад

φ х

Cos φ х

Cos 2 φ х

N х

Ν х Cos φ х

z 2

b 4

b 2

b 3

b 5

φ

l 0

λ

Если вычисления произведены верно, копируем обе таблицы на один лист, скрываем строки промежуточных вычислений и колонку № п/п, а оставляем только строки ввода исходных данных и результатов вычислений. Форматируем таблицу и корректируем названия колонок и столбцов по вашему усмотрению.

Рабочие таблицы могут выглядеть так

Таблица 4.5.


Примечания .
1. В зависимости от требуемой точности можно увеличить или уменьшить разрядность.
2. Количество строк в таблице можно сократить, объединив вычисления. Например, радианы угла не вычислять отдельно, а сразу записать в формулу =SIN(РАДИАНЫ(C3)).
3. Округление в п. 23 табл. 4.1. производим для «сцепления». Число разрядов в округлении 3.
4. Если не изменить формат ячеек в колонках «Град» и «Мин», то нулей перед цифрами не будет. Изменение формата здесь выполнено только для зрительного восприятия (по решению автора) и на результаты вычислений не влияет.
5. Чтобы случайно не повредить формулы, следует защитить таблицу: Сервис / Защитить лист. Перед защитой выделить ячейки для ввода исходных данных, а затем: Формат ячеек / Защита / Защищенная ячейка - убрать галочку.

4.8. СВЯЗЬ ПЛОСКОЙ ПРЯМОУГОЛЬНОЙ И ПОЛЯРНОЙ СИСТЕМ КООРДИНАТ

Простота полярной системы координат и возможность ее построения относительно любой точки местности, принимаемой за полюс, обусловили ее широкое применение в топографии. Чтобы связать воедино полярные системы отдельных точек местности, необходимо перейти к определению положения последних в прямоугольной системе координат, которая может быть распространена на значительно большую по площади территорию. Связь между двумя системами устанавливается решением прямой и обратной геодезических задач.
Прямая геодезическая задача состоит в определении координат конечной точки В (рис. 4.4) линии АВ по длине ее горизонтального проложения d , направлению α и координатам начальной точки х А , у А .


Рис. 4.6. Решение прямой и обратной геодезических задач

Так, если принять точку А (рис. 4.4) за полюс полярной системы координат, а прямую АВ - за полярную ось, параллельную оси ОХ , то полярными координатами точки В будут d и α . Необходимо вычислить прямоугольные координаты этой точки в системе ХОУ.

Из рис. 3.4 видно, что х В отличается от х А на величину (х В - х А ) = Δх АВ , а у В отличается от у А на величину (у В - у А ) = Δу АВ . Разности координат конечной В и начальной А точек линии АВ Δх и Δу называют приращениями координат . Приращениями координат являются ортогональные проекции линии АВ на оси координат. Координаты х В и у В могут быть вычислены по формулам:

х В = х А + Δх АВ (4.1)
у В = у А + Δу АВ (4.2)

Значения приращений определяют из прямоугольного треугольника АСВ по заданным d и α, так как приращения Δх и Δу являются катетами этого прямоугольного треугольника:

Δх АВ =d cos α (4.3)
Δу АВ = d sin α (4.4)

Знак приращений координат зависит от угла положения.

Таблица 4.1.

Подставив значение приращений Δх АВ и Δу АВ в формулы (3.1 и 3.2), получим формулы для решения прямой геодезической задачи:

х В = х А + d cos α (4.5)
у В = у А + d sin α (4.6)

Обратная геодезическая задача заключается в определении длины горизонтального проложения d и направления α линии АВ по данным координатам ее начальной точки А (хА, уА) и конечной В (хВ, уВ). Угол направления вычисляется по катетам прямоугольного треугольника:

tg α = (4.7)

Горизонтальное проложение d , определяют по формуле:

d = (4.8)

Для решения прямой и обратной геодезической задачи можно воспользоваться электронными таблицами Microsoft Excel .

Пример .
Задана точка А с координатами: х А = 6068318,25; у А = 4313450,37. Горизонтальное проложение (d) между точкой А и точкой В равно 5248,36 м. Угол между северным направлением оси ОХ и направлением на точку В (угол положения - α ) равен 30º.

Рассчитать прямоугольные координаты точки В (х В , у В ).

Вводим исходные данные и формулы в электронные таблицы Microsoft Excel (таб. 4.2).

Таблица 4.2.

Исходные данные

х А

у А

Вычисления

Δх АВ = d cos α

B4*COS(РАДИАНЫ(B5))

Δу АВ = d sin α

B4*SIN(РАДИАНЫ(B5))

х В

у В


Вид таблицы после вычислений (таб. 4.3) .

Таблица 4.3.

Исходные данные

х А

у А

Вычисления

Δх АВ = d cos α

Δу АВ = d sin α

х В

у В

Пример .
Заданы точки А и В с координатами:
х А = 6068318,25; у А = 4313450,37;
х В = 6072863,46; у В = 4313450,37.
Рассчитать горизонтальное проложение d между точкой А и точкой В, а также угол α между северным направлением оси ОХ и направлением на точку В .
Вводим исходные данные и формулы в электронные таблицы Microsoft Excel (таб. 4.4).

Таблица 4.4.

Исходные данные

х А

у А

х В

у В

Вычисления

Δх АВ

Δу АВ

КОРЕНЬ(B7^2+B8^2)

Тангенс

Арктангенс

Градусы

ГРАДУСЫ(B11)

Выбор

ЕСЛИ(B12<0;B12+180;B12)

Угол положения (град)

ЕСЛИ(B8<0;B13+180;B13)

Вид таблицы после вычислений (таб. 4.5).

Таблица 4.5.

Исходные данные

х А

у А

х В

у В

Вычисления

Δх АВ

Δу АВ

Тангенс

Арктангенс

Градусы

Выбор

Угол положения (град)

Если ваши вычисления совпали с вычислениями учебного пособия, скройте промежуточные расчеты, отформатируйте и защитите таблицу.

Видео
Прямоугольные координаты

Вопросы и задания для самоконтроля

  1. Какие величины называют прямоугольными координатами?
  2. На какой поверхности применяют прямоугольные координаты?
  3. В чем заключается суть зональной системы прямоугольных координат?
  4. Назовите номер шестиградусной зоны, в которой находится г. Луганск с координатами: 48°35′ с.ш. 39°20′ в.д.
  5. Рассчитайте долготу осевого меридиана шестиградусной зоны, в которой находится г. Луганск.
  6. Как ведется счет координат х и у в прямоугольной системе координат Гаусса?
  7. Объясните порядок определения прямоугольных координат на топографической карте с помощью циркуля-измерителя.
  8. Объясните порядок определения прямоугольных координат на топографической карте с помощью координатомера.
  9. В чем сущность прямой геодезической задачи?
  10. В чем сущность обратной геодезической задачи?
  11. Какую величину называют приращением координат?
  12. Дайте определения синуса, косинуса, тангенса и котангенса угла.
  13. Как можно применить в топографии теорему Пифагора о соотношении между сторонами прямоугольного треугольника?

Начало координат

Начало координат (начало отсчёта) в евклидовом пространстве - особая точка , обычно обозначаемая буквой О , которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.

Вектор, проведённый из начала координат, в другую точку называется радиус-вектором .

Декартова система координат

Начало координат делит каждую из осей на два луча - положительную полуось и отрицательную полуось.

В частности, начало координат можно ввести на числовой оси . В этом смысле можно говорить о начале координат для разных экстенсивных величин (времени , температуры и пр.)

Полярные системы координат


Wikimedia Foundation . 2010 .

Смотреть что такое "Начало координат" в других словарях:

    начало координат - Нулевая точка (точка пересечения осей) в плоской системе координат, применяемой в графических системах, работающих с двухмерными изображениями. Координата точки задается расстоянием от начала (центра) координат по горизонтальной оси X (абсцисса)… …

    начало координат - koordinačių pradžia statusas T sritis automatika atitikmenys: angl. origin of coordinates vok. Koordinatenanfangspunkt, m; Koordinatenursprung, m rus. начало координат, n pranc. origine de cordonnées, f … Automatikos terminų žodynas

    начало координат (графопостроителя) - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN plot origin … Справочник технического переводчика

    - (origin) Точка на графике, обозначающая нуль при любых измерениях. Диаграмма может иметь более одной точки отсчета. Двухфакторная квадратная диаграмма (box diagram), например, строится таким образом, что общие имеющиеся объемы каких либо факторов … Экономический словарь

    направленное реле сопротивления с характеристикой, не проходящей через начало координат - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN offset mho distance relay … Справочник технического переводчика

    характеристика направленного реле сопротивления в виде окружности, проходящей через начало координат - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN mho characteristic … Справочник технического переводчика

    начало отсчета - Позиция на экране дисплея, от которой начинаются все системы координат. Обычно находится в левом верхнем углу экрана. Тематики информационные технологии в целом EN origin … Справочник технического переводчика

    Прямоугольная система координат прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для… … Википедия

    Точка имеет три декартовых и три сферических координаты Сферическую систему координат удобно определять, соотносясь с д … Википедия

    Комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В… … Википедия

Книги

  • Веснадцать , Данилова Стефания , Поэт Стефания Данилова родилась 16 августа 1994 года в Петербурге, и безоговорочно влюблена в этот город. Амбидекстр, вундеркинд, полиглот, создавшая в три года первоевзрослое стихотворение.… Категория: Современная отечественная поэзия Серия: Звезда рунета Издатель: АСТ ,
  • Промысл , Рогатко Сергей Александрович , Новый роман "Промысл" писателя Сергея Рогатко, исповедующего реалистическое начало в русской литературе и подтвердившего это в своем известном романе" Мирянин", написан в жанре притчи,"… Категория: