К прямому делению клетки относят. Деление клеток. Митоз и мейоз, фазы деления. Где встречается данная ткань

Жизненный цикл клетки

Весь период существования – от возникновения до деления или гибели клетки называют клеточным циклом.

Вновь появившаяся клетка первоначально растет, дифференцируется, выполняет свои специфические функции – это время – период покоя .

Образование клеток возможно только путем деления, поэтому важной частью ЖЦК является митотический цикл, включающий подготовку к делению (интерфазу) и само деление.

Интерфаза включает 3 периода –

· пресинтетический - G1 - клетка растет, осуществляется синтез белка и РНК, накапливает богатые энергией в-ва. – продолжительность разная – около 10 часов в среднем.

· синтетический – G2 – удвоение генетического материала, необходима для того, чтобы вновь образовавшиеся клетки имели тот же геном, как и их предщественница.. продолжается синтез белка и РНК – около 9 часов.

· постсинтетический – G2 – клетка готовится к делению, накапливая энергию и белки, увеличивается кол-во митохондрий, делится центросома – фаза =4часа

продолжительность клеточного цикла зависит от типа клетки и от внешних факторов, таких как температура, кислород, питательные в-ва. Бактериальные клетки могут делиться каждые 20 мин, клетки кишечного эпителия – каждые 8-10 часов, а многие клетки нервной системы – не делятся никогда.

3 типа деления:

· амитоз - прямое деление, делится путем прямой перетяжки, наследственный материал распределяется неравномерно. Возможно образование двухядерных клеток. Амитоз- редкое явление, характерен для погибающих или измененных клеток – например, опухолевых.

· митоз - непрямое деление соматических клеток – в результате деления образуются 2 её точные копии. в быстро делящихся клетках, например, эмбриональных, ЖЦ практически совпадает с митотическим циклом. Это универсальный способ увеличения кол-ва или замещения погибших эукариот.клеток

· мейоз – редукционное деление половых клеток. Оно приводит к уменьшению содержания наследственного материала во вновь образовавшихся клетках, при этом в родительской клетке происходит однократное удвоение хромосом (репликация ДНК, как при митозе), затем следуют 2 цикла клеточных и ядерных делений. т.о. сохраняется постоянство набора генетических структур у потомков при слиянии половых клеток родителей

Основы цитогенетики. Строение и типы метафазных хромосом.

Хромосома – структурный элемент клеточного ядра дезоксирибонуклеиновой природы.

Хромосомы человека впервые наблюдали Арнольд (1879) и Флеминг(1882) в периоде митоза. Затем многие ученые изучали эти структуры клеточного ядра. Однако, только в 1955г. Трио и Леван установили, что в большинстве клеток человека – 46 хромосом. Открытие в 1959г патологических изменений в наборе хромосом при болезни Дауна привело к возникновению нового раздела генетики человека – учения о хромосомных болезнях.


Хромосомы – (окрашенные тельца) формируются в начале деления клеток из хроматина интерфазного ядра. Х – основные носители наследственной информации, передаваемой из поколения в поколение у большинства живых организмов.

Хроматин состоит из молекул ДНК , связанных белками. Эти нити можно рассмотреть только в электронный микроскоп. Они составлены из расположенных друг за другом микрочастиц – нуклеосом, Ø10нм.

Нуклеосома имеет белковый остов, вокруг которого закручена молекула ДНК.

Во время деления нити хроматина сильно спирализуются, закручиваются и утолщаются, формируя видимые в световой микроскоп хромосомы. Имеет белковый остов вокруг которого закручена молекула ДНК.

Именно поэтому, основные сведения о строении хромосом были получены во время митоза.

Так как моменту деления хромосомы удвоены, то в световой микроскоп они видны состоящими из 2-х нитей – хроматид. Они объединены между собой в области первичной перетяжки – центромера – она делит хромосому поперек и на 2 части – плечи (которые бывают короткие и длинные)

В зависимости от расположения центромеры различают 3 типа хромосом:

· Метацентрические – центромера в центре, плечи равны.

· Субметацентрические – центромера сдвинута к одному концу хромосом, плечи 1<2.

· Акроцентрические – визуально можно увидеть у хромосомы только длинные плечи.

· Некоторые хромосомы могут иметь дополнительные перетяжки – вторичные –спутник – если перетяжка близко к концу хромосомы. У человека спутника имеются у 5 пар хромосом – 13-15я и 21-22 пары.

Существуют 3 способа деления клетки - митоз, амитоз, мейоз.

Митоз

Митоз - непрямое деление клетки. Митоз состоит из 4 фаз: профазы, метафазы, анафазы, телофазы.

Первая фаза - профаза. В профазе хромосомы спирализуются, укорачиваются, утолщаются и становятся видны. Каждая хромосома состоит из двух хроматид. Они соединены центромерой. К концу профазы ядерная оболочка и ядрышки растворяются. Центриоли расходятся к полюсам клетки. Образуется веретено деления (рис. 42, 2).

В метафазе хромосомы располагаются на экваторе. Хорошо видны число и форма хромосом. Нити веретена деления тянутся от полюсов к центромерам (42, 3).

В анафазе центромеры делятся и хроматиды (дочерние хромосомы) расходятся к разным полюсам. Движение хромосом проис-

ходит благодаря нитям веретена, которые, сокращаясь, растягивают дочерние хромосомы от экватора к полюсам (рис. 42, 4).

Митоз заканчивается телофазой. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуют- ся и становятся не видны (рис. 42, 5).

Образуется ядерная оболочка. В ядре формируется ядрышко. Происходит деление цитоплазмы. В клетках животных цитоп- лазма делится путем перетяжки, впячиванием мембраны от краев к центру.

Рис.42. Митоз. Ядро неделящейся клетки. Видно круглое ядрышко (1). 2 - профаза, 3 - метафаза, 4 - анафаза, 5 - телофаза.

В клетках растений в центре образуется перегородка, которая растет по направлению к стенкам клетки. После образования поперечной цитоплазматической мембраны у растительных клеток образуется целлюлярная стенка (рис. 43).

В результате митоза каждая дочерняя клетка получает точно такие же хромосомы, какие имела материнская клетка. Число хро- мосом в обеих дочерних клетках равно числу хромосом материнской клетки.

Биологическое значение митоза

Митоз обеспечивает точную передачу наследственной информации каждому из дочерних ядер.

Митотический цикл

Митотический цикл - период между окончанием одного деления и началом последующего. Этот период в митотическом цикле клетки называют интерфазой.

Интерфаза имеет 3 периода:

. Пресинтетический G 1 . В этом периоде происходит синтез РНК, белка и рост клетки. Клетки имеют диплоидный (2n) набор хромосом и 2с генетического материала ДНК.

Рис. 43. Образование цитоплазматической мембраны в клетках животных (1, 2) и растений (3, 4).

Рис. 44. Митотический цикл диплоидной клетки.

G 1 - пресинтетический (постмитотический) период: S - синтетический период, G 2 - постсинтетический (премитотический) период. Митоз: П - профаза; М - метафаза, А - анафаза, Т - телофаза; n - гаплоидный набор хромосом; 2n - диплоидный набор хромосом; 4n - тетраплоидный набор хромосом; c - количество ДНК, соответствующее гаплоидному набору хромосом. Вне круга схематично показаны изменения хромосом в различные периоды жизненного цикла клетки.

. Синтетический (S). Происходит редупликация молекул ДНК и формируется вторая хроматида в хромосоме. Каждая хромосома состоит из двух хроматид и содержит 4с ДНК. Число хромосом не меняется (2n).

. В постсинтетическом периоде G 2 происходит синтез белков, необходимых для формирования веретена деления. Завершается удвоение центриолей. В молекулах АТФ накапливается энергия, необходимая для деления клетки. Клетка готова к делению. Ни содержание ДНК (4с), ни число хромосом (2n) не меняется.

Клетки имеют диплоидный набор хромосом. Каждая хромосома состоит из двух хроматид (рис. 44).

Вопросы для самоконтроля

1. Какое деление клеток называют митозом?

2. Какие клетки делятся митозом?

3. Из каких фаз состоит митоз?

4. Что происходит в профазе митоза?

5. Где располагаются хромосомы в метафазе митоза?

6. Что происходит в анафазе митоза?

7. Что происходит в телофазе митоза?

8. Какой набор хромосом имеют дочерние клетки, образующиеся в результате митоза?

9. Какое биологическое значение имеет митоз? 10.На какие периоды делится интерфаза?

11.Что происходит в пресинтетическом периоде интерфазы? 12.Что происходит в синтетическом периоде интерфазы? 13.Что происходит в постсинтетическом периоде интерфазы?

Ключевые слова темы «Митоз»

анафаза

веретено деления

деление

значение

интерфаза

информация

клетка

край

мембрана

метафаза

митоз

направление нить

окончание

перегородка

перетяжка

период

полюс

профаза

растение

редупликация

результат

рост

синтез

стадия

стенка

тело

телофаза

форма

хроматида

хромосома

центр

центриоли

центромера

экватор

ядерная оболочка ядро

ядрышки

Амитоз

Амитоз - прямое деление клетки, при котором ядро находится в интерфазном состоянии. Хромосомы не выявляются. Веретено деления не образуется. Амитоз приводит к появлению двух клеток, но очень часто в результате амитоза возникают двуядерные и многоядерные клетки.

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образуя два ядра, или имеет место множественное разделение ядра, его фрагментация. Ядра могут быть неравной величины.

Амитоз встречается в отживающих, дегенерирующих клетках, неспособных дать новые жизнеспособные клетки.

В норме амитотическое деление ядер встречается в зародышевых оболочках животных, в фолликулярных клетках яичника.

Амитотически делящиеся клетки встречаются при различных патологических процессах (воспаление, злокачественный рост и др.).

Вопросы для самоконтроля

1. Что такое амитоз?

2. Как происходит амитотическое деление?

3. В каких клетках происходит амитоз?

Ключевые слова темы «Амитоз»

Амитоз

Двуядерные клетки

Многоядерные клетки Фрагментация

Мейоз

Мейоз происходит при образовании гамет у животных и образовании спор у растений. Мейоз - редукционное деление. В результате мейоза происходит редукция числа хромосом с диплоидного (2n) до гаплоидного (n). Мейоз включает 2 последовательных деления. В каждом мейотическом делении выделяют 4 стадии: профазу, метафазу, анафазу и телофазу.

Профаза первого мейотического деления

Профаза первого мейотического деления наиболее сложная. В ней различают 5 стадий: лептотену, зиготену, пахитену, диплотену, диакинез.

В лептотену (I стадия) начинается спирализация хромосом. Хромосомы становятся видимыми в микроскоп как длинные и тонкие нити. Каждая хромосома состоит из двух хроматид. В ядре виден диплоидный набор хромосом (рис. 45).

Во II стадии профазы первого мейотического деления - зиготене - продолжается спирализация хромосом и происходит конъюгация гомологичных хромосом. Гомологичными называются хро- мосомы, имеющие одинаковую форму и размер: одна из них получена от матери, а другая от отца. Гомологичные хромосомы притягиваются и прикладываются друг к другу по всей длине. Центромера одной из парных хромосом точно прилегает к центромере другой и каждая хромомера прилегает к гомологичной хромомере другой (рис. 46).

Рис 45. Лептотена.

Рис. 46. Зиготена.

III стадия - пахитена - стадия толстых нитей. Конъюгирую- щие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация хромосом. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется кроссинговером (рис. 47).

В диплотене (IV стадия) возникают силы отталкивания между гомологичными хромосомами. Хромосомы, составляющие бива- лент, начинают отходить друг от друга в первую очередь в области центромер. При расхождении хроматид в некоторых местах обнаруживается явление перекреста и сцепления (рис. 48).

V стадия - диакинез - характеризуется максимальной спирализацией, укорочением и утолщением хромосом (рис. 49). Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.

В профазе первого мейотического деления происходит 3 основных процесса: конъюгация гомологичных хромосом; образо- вание бивалентов хромосом или тетрад хроматид; кроссинговер.

Рис. 47. Пахитена.

Рис. 48. Диплотена.

Рис. 49. Диакинез.

Метафаза первого мейотического деления

В метафазе первого мейотического деления биваленты хромосом располагаются по экватору клетки. К ним прикрепляются нити веретена деления (рис. 50).

Анафаза первого мейотического деления

В анафазе первого мейотического деления к полюсам клетки рас- ходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом (рис. 51).

Телофаза первого мейотического деления

В телофазе первого мейотического деления число хромосом в каждой клетке становится гаплоидным. На короткое время образуется ядерная оболочка (рис. 52).

Рис. 50. Метафаза I.

Рис. 51. Анафаза I.

Рис. 52. Телофаза I.

Между первым и вторым делениями мейоза в клетке животных может быть короткая интерфаза. Во время интерфазы нет редупликации молекул ДНК.

Второе мейотическое деление происходит так же, как митоз.

Профаза второго мейотического деления

В профазе второго мейотического деления хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления (рис. 53).

Метафаза второго мейотического деления

В метафазе второго мейотического деления хромосомы выстраиваются вдоль экватора. К ним подходят нити веретена деления (рис. 54).

Анафаза второго мейотического деления

В анафазе второго мейотического деления центромеры делятся и тянут за собой к противоположным полюсам хроматиды, отделившиеся друг от друга. Хроматиды называются хромосомами (рис. 55).

Рис. 53. Профаза II.

Рис. 54. Метафаза II.

Рис. 55. Анафаза II.

Рис. 56. Телофаза II.

Телофаза второго мейотического деления

В телофазе второго мейотического деления хромосомы деспирализуются, становятся невидимыми. Формируется ядерная оболочка. Каждое ядро содержит гаплоидное число хромосом. Происходит деление цитоплазмы. Из исходной диплоидной клетки образуются 4 гаплоидных (рис. 56).

Таким образом, при мейозе происходит конъюгация и кроссинговер между участками гомологичных хромосом и редукция числа хромосом (рис. 57).

Вопросы для самоконтроля

1. Какое деление называется мейозом?

2. Что происходит при мейозе?

3. Сколько делений имеет мейоз?

4. Что происходит в профазе первого деления мейоза?

5. Что происходит в метафазе первого деления мейоза?

6. Что происходит в анафазе первого деления мейоза?

7. Какой набор хромосом имеют клетки в телофазе первого деления мейоза?

8. Что происходит в профазе второго деления мейоза?

9. Что происходит в метафазе второго деления мейоза? 10.Что происходит в анафазе второго деления мейоза? 11.Что происходит в телофазе второго деления мейоза? 12.Сколько клеток образовалось в результате мейоза? 13. Какой набор хромосом они имеют?

Рис. 57. Сравнение митоза и мейоза.

Ключевые слова темы «Мейоз»

анафаза

биваленты

веретено

гаметы

гаплоидный

деление

диплоидный

животные

интерфаза

конъюгация

кроссинговер

мейоз

метафаза

молекула

нить

область

обмен

оболочка

плечо хромосомы

полюс

профаза

растения

редукция

редупликация

результат

спирализация

споры

телофаза

участок

хроматида

хромосома

центриоли

центромера

экватор

Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл – переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению – можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.

Рис.1. Митоз и мейоз

При образовании гамет, т.е. половых клеток – сперматозоидов и яйцеклеток – происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер - обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.

Рис.2. Фазы деления клетки

Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).


Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.

Каждое из вновь образовавшихся ядер получило весь объем генетической информации, которым обладала ядерная ДНК материнской клетки. В результате митоза оба дочерних ядра имеют одинаковое количество ДНК и одинаковое число хромосом, такое же, как в материнском.

Цитокинез – после образования в телофазе двух новых ядер происходит деление клетки и формирование в экваториальной плоскости перегородки – клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами, не достигая их, формируется цилиндрическая система волокон, называемая фрагмопластом, которая также как и волокна ахроматинового веретена, состоит из микротрубочек и связаны с ним. В центре фрагмопласта на экваторе между дочерними ядрами скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке, а их мембраны участвуют в построении плазмолемм по обеим сторонам пластинки. Клеточная пластинка закладывается в виде диска, взвешенного в фрагмопласте. Волокна фрагмопласта, видимо, контролируют направление движения пузырьков Гольджи. Клеточная пластинка растет центробежно по направлению к стенкам материнской клетки за счет включения в нее полисахаридов все новых и новых пузырьков Гольджи. Клеточная пластинка имеет полужидкую консистенцию, состоит из аморфного протопектина и пектатов магния и кальция. В это время из трубчатого ЭР образуются плазмодесмы. Расширяющийся фрагмопласт постепенно приобретает форму бочонка, позволяя клеточной пластинке расти латерально, пока она не соединится со стенками материнской клетки. Фрагмопласт исчезает, обособление двух дочерних клеток заканчивается. Каждый протопласт откладывает на клеточную пластинку свою первичную клеточную стенку.

Цитокинез с помощью клеточной пластинки происходит у всех высших растений и некоторых водорослей. У остальных организмов клетки делятся внедрением клеточной оболочки, которая постепенно углубляется и разделяет клетки.

Биологическое значение митоза состоит в строго одинаковом распределении между дочерними клетками материальных носителей наследственности – молекул ДНК, входящих в состав хромосом. Благодаря равномерному разделению реплицированных хромосом между дочерними клетками обеспечивается образование генетически равноценных клеток и сохраняется преемственность в ряду клеточных поколений. Это обеспечивает таки важные моменты жизнедеятельности, как эмбриональное развитие и рост организмов, восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологической основой бесполого размножения организмов.

Мейоз. Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое и переход клеток из диплоидного состояния (2n) в гаплоидное (n). Мейоз – единый, непрерывный процесс состоящий из двух последовательных делений, каждое из которых можно разделть на те же, что и в митозе, четыре фазы: профазу, метафазу, анафазу и телофазу. Обоим делениям предшествует одна интерфаза. В синтетическом периоде интерфазы до начала мейоза удваивается количество ДНК и каждая хромосома становится двухроматидной.

Первое мейотическое, или редукционное, деление.

Профаза I продолжается от нескольких часов до нескольких недель. Хромосомы спирализуются. Гомологичные хромосомы коньюгируют, образуя пары – биваленты. Бивалент состоит из четырех хроматид двух гомологичных хромосом. В бивалентах осуществляется кроссинговер – обмен гомологичными участками гомологичных хромосом, что приводит к их глубокому преобразованию. Во время коссинговера происходит обмен блоками генов, что объясняет генетическое разнообразие потомства. К концу профазы исчезает ядерная оболочка и ядрышко, формируется ахроматиновое веретено.

Метафаза I – биваленты собираются в экваториальной плоскости клетки. Ориентирование материнской и отцовской хромосомы из каждой гомологичной пары к одному или другому полюсу веретена деления является случайным. К центромере каждой из хромосом присоединяется тянущая нить ахроматинового веретена. Две сетринские хроматиды не разделяются.

Анафаза I – происходит сокращение тянущих нитей, и к полюсам расходятся двухроматидные хромосомы. Гомологичные хромосмы каждого из бивалентов уходят к противоположным полюсам. Расходятся случайно перераспределенные гомологичные хромосомы каждой пары (независимое распределение), и на каждом из полюсов собирается половинное число (гаплоидный набор) хромосом, образуется два гаплоидных набора хромосом.

Телофаза I – у полюсов веретена собирается одиночный, гаплоидный, набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочернии.

Второе мейотическое деление следует сразу же после первого и сходно с обычным митозом (поэтому его часто называют митозом мейоза), только клетки, вступающие в него, несут гаплоидный набор хромосом.

Профаза II – непродолжительная.

Метафаза II – снова образуется веретено деления, хромосомы выстраиваются в экваториальной плоскости и центормерами прикрепляются к микротрубочкам веретена деления.

Анафаза II – осуществляется разделение их ценромер и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам веретена.

Телофаза II – завершается расхождение сестринских хромосом к полюсам и наступает деление клеток: из двух гаплоидных клеток образуются 4 клетки с гаплоидным набором хромосом.

Редукционное деление является как бы регулятором, препятствующим непрерывному увеличению числа хромосом при слиянии гамет. Не будь такого механизма, при половом размножении число хромосом удваивалось бы в каждом новом поколении. Т.е. благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях каждого вида растений, животных, протист и грибов. Другое значение заключается в обеспечении разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их расхождении в анафазе I мейоза. Это обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Деление представляет способ самовоспроизведения клеток. Оно обеспечивает:

а) непрерывность существования клеток определенного типа;

б) тканевой гомеостаз;

в)физиологическую и репаративную регенерацию тканей и органов;

г) размножение особей и сохранение видов животных.

Существует 3 способа деления клеток:

1. амитоз – деление клетки без видимых изменений хромосомного аппарата. Оно происходит путем простой перетяжки ядра и цитоплазмы. Хромосомы не выявляются, веретено деления не образуется. Свойственен некоторым эмбриональным и поврежденным тканям.

2. митоз – способ деления соматических и половых клеток на стадии размножения. При этом из одной материнской клетки образуются две дочерние с полным, или диплоидным, набором хромосом.

3. мейоз – это способ деления половых клеток на стадии созревания, при котором из одной материнской клетки образуются 4 дочерние с половинным, гаплоидным, набором хромосом.


Митоз.

Митозу предшествует интерфаза, в течение которой клетка готовится к будущему делению. Эта подготовка включает

· рост клетки;

· накопление энергии в виде АТФ и питательных веществ;

· самоудвоение молекул ДНК и хромосомного набора. В результате удвоения каждая хромосома состоит из 2-х сестринских хроматид;

· удвоение центриолей клеточного центра;

· синтез специальных белков типа тубулина для построения нитей веретена деления.

Собственно митоз слагается из 4 фаз :

· профазы,

· метафазы,

· анафазы,

· телофазы.

В профазе хромосомы спирализуются, уплотняются и укорачиваются. Они теперь видны при световой микроскопии. Центриоли клеточного центра начинают расходиться к полюсам. Между ними строится веретено деления. В конце профазы исчезает ядрышко и происходит фрагментация ядерной оболочки.

В метафазе завершается построение веретена деления. Короткие нити веретена прикрепляются к центромерам хромосом. Все хромосомы располагаются на экваторе клетки. Каждая из них удерживается в экваториальной пластинке с помощью 2-х, хроматиновых нитей, которые идут к полюсам клетки, а ее центральная зона заполнена длинными ахроматиновыми фибриллами.

В анафазе за счет сокращения хроматиновых нитей веретена деления хроматиды отрываются друг от друга в области центромеров, после чего каждая из них скользит по центральным нитям к верхнему или нижнему полюсу клетки. С этого момента хроматида называется хромосомой. Таким образом на полюсах клетки оказывается равное количество идентичных хромосом, т.е. по одному полному, диплоидному, их набору.

В телофазе вокруг каждой группы хромосом образуется новая ядерная оболочка. Конденсированный хроматин начинает разрыхляться. Появляются ядрышки. В центральной части клетки плазмолемма впячивается внутрь, с ней соединяются канальцы эндоплазматической сети, что приводит к цитотомии и разделению материнской клетки на две дочерние.

Половое размножение существует почти у всех растений и животных. Оно связано с образованием высокоспециализированных половых клеток - гамет. Гаметы формируются из диплоидных клеток путем специального типа клеточного деления - мейоза, в результате которого в клетках исходное число хромосом уменьшается вдвое (из диплоидного становится гаплоидным).

Несмотря на принципиальное сходство гаметогенеза у самых различных видов организмов, конкретные формы мейоза чрезвычайно разнообразны.

Мужские гаметы созревают в мужских половых железах - семенниках; этот процесс называется сперматогенезом. Женские гаметы созревают в яичниках в процессе овогенеза. В половых железах различают: зону размножения, зону роста и зону созревания; в зоне созревания гаметы окончательно формируются путем мейоза.

Мейоз происходит в результате двух последовательных делений родоначальной диплоидной клетки. Каждое из них включает четыре фазы. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления - цифрой II. Передпрофазой I в клетках, удваивается ДНК и в мейоз клетки вступают с хромосомным набором 2n4с.

В профазе I хромосомы вначале имеют вид тонких нитей, а затем утолщаются. Гомологичные хромосомы сближаются, в пунктах касания они перекрещиваются и обмениваются гомологичными участками- этот процесс называется кроссинговером (и представляет один из источников генотипической комбинативной изменчивости). Каждая хромосома в результате самоудвоения состоит из двух хроматид и называется унивалентой, а после сближения двух гомологичных хромосом (двух унивалент) образуются тетрады (биваленты). Как и в профазе митоза, в клетке в этот период формируется веретено деления, центриоли отходят к полюсам, оболочка ядра распадается, а тетрады движутся к центру клетки.

В метафазе I тетрады выстраиваются в плоскости экватора, гомологичные хромосомы в области центромер отходят друг от друга, оставаясь соединенными в области плеч. Нити веретена прикрепляются к центромерам гомологичных хромосом. Клетка вступает в третью фазу - анафазу I, во время которой нити веретена увлекают униваленты к противоположным полюсам. При этом одна из двух гомологичных хромосом случайно оказывается на одном полюсе, вторая - на другом. Именно в этот период происходит уменьшение вдвое (редукция) числа хромосом и их случайное перераспределение в будущих гаметах. В заключительной фазе клетка вступает в телофазу I. Таким образом, в итоге мейоза образуются две клетки, содержащие лишь по одной из двух гомологичных хромосом, каждая из которых состоит из двух хроматид. Хромосомы в результате кроссинговера обмениваются своими участками и несут, таким образом, перекомбинированный наследственный материал. Телофаза I длится недолго, и клетка переходит в интерфазу (краткую по времени), после которой наступает второе мейотическое деление. Во время интерфазы в отличие от митоза в клетках не происходит синтеза ДНК.

В профазе II по периферии ядра располагаются нитевидные хромосомы - униваленты, образуется веретено деления, хромосомы, приближаются к плоскости экватора и клетка вступает метафазу II. В анафазе II хроматиды расходятся и увлекаются нитями веретена от плоскости экватора к противоположным полюсам. Вслед за этим наступает телофаза II, во время которой хромосомы истончаются, образуя нити, и у полюсов формируются ядра дочерних клеток. В итоге из двух клеток мейоза I в телофазе мейоза II образуются четыре дочерние зрелые гаметы, жаждая из которых несет газплоидное число хромосом. Описанный процесс типичен для формирования мужских гамет. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна зрелая яйцеклетка, а три мелких редукционных тельца впоследствии отмирают.

Мейоз под микроскопом

Биологическое значение мейоза состоит в том, что:

1) образуются хромосомы обновленного генетического состава благодаря кроссинговеру между гомологичными хромосомами;
2) достигается наследственная разнородность гамет, так как во время первого мейотического деления из дары гомологичных хромосом в одну из двух гамет отходит материнская хромосома, в другую - отцовская;
3) после оплодотворения гаплоидные гаметы (1n1с) от отца и матери создают диплоидное ядро зиготы с числом хромосом, присущим данному виду.

Процессы сперматогенеза и овогенеза в принципе сходны, но между ними имеются и различия. В результате сперматогенеза образуется четыре сперматозоида, аовогенез завершается образованием одной яйцеклетки. Это обусловлено тем, что при первом и втором делениях созревания яйцеклетки не делятся пополам, а отделяют маленькие направительные, или редукционные, тельца. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таблица Деление клеток (исходная клетка 2п 4с (n - хромосомы, с - хроматиды))

Тип деления Фазы Набор хромосом в
результате деления
(n - хромосомы,
с - хроматиды)
Число и качество
клеток, образую
щихся в резуль
тате деления
Клетки, где происходит
деление
Распро-странение среди
организмов
Митоз
(непрямое
деление)
Интерфаза
Профаза
Метафаза
Анафаза
Телофаза
2п 2с (дипло-идный), хромосомы
однохрома-тидные
Две дипло-идные
Сомати-
ческие (клетки
тела)
Все животные и расти
тельные организмы, кроме бактерий и синезеленых (прокариот)
Мейоз:
мейоз I (ре
дукцион-ное
деление)

Мейоз II
(митоти-ческое
деление)

Интерфаза
Профаза I
Метафаза I
Анафаза I
Телофаза I

Метафаза II
Анафаза II
Телофаза II

In (гапло-идный), хромосомы
двухро-
матидные

1n 1с (гапло-идный), хромосомы
однохро-матидные

Две гапло-идные

Две гапло-идные

Всего: четыре
гапло-идные
клетки

Половые клетки животных: при овогенезе
образуются четыре клетки: одна яйцеклетка и три направи-тельных тельца (отмира-
ющие); при
сперма-
тогенезе все
клетки образуют сперма-
тозоиды.
Сяюрообра-зующие
клетки растений: у семенных растений из четырех крупных спор три
отмирают, одна остается; мелкие споры все
остаются
Все животные и растения, кроме прокариот