Чему равен магнитный поток через контур. Базовые формулы. Раскрывая тайну магнитных потоков

магнитная индукция - является плотностью магнитного потока в данной точке поля. Единицей магнитной индукции является тесла (1 Тл = 1 Вб/м 2).

Возвращаясь к полученному ранее выражению (1), можно количественно определить магнитный поток через некоторую поверхность как произведение величины заряда, протекающего через проводник совмещенный с границей этой поверхности при полном исчезновении магнитного поля, на сопротивление электрической цепи, по которой протекают эти заряды

.

В описанных выше опытах с пробным витком (кольцом), он удалялся на такое расстояние, при котором исчезали всякие проявления магнитного поля. Но можно просто перемещать этот виток в пределах поля и при этом в нем также будут перемещаться электрические заряды. Перейдем в выражении (1) к приращениям

Ф + Δ Ф = r (q - Δ q ) => Δ Ф = -rΔ q => Δ q = -Δ Ф/r

где Δ Ф и Δ q - приращения потока и количества зарядов. Разные знаки приращений объясняются тем, что положительный заряд в опытах с удалением витка соответствовал исчезновению поля, т.е. отрицательному приращению магнитного потока.

С помощью пробного витка можно исследовать все пространство вокруг магнита или катушки с током и построить линии, направление касательных к которым в каждой точке будет соответствовать направлению вектора магнитной индукции B (рис. 3)

Эти линии называются линиями вектора магнитной индукции или магнитными линиями .

Пространство магнитного поля можно мысленно разделить трубчатыми поверхностями, образованными магнитными линиями, причем, поверхности можно выбрать таким образом, чтобы магнитный поток внутри каждой такой поверхности (трубки) численно был равен единице и изобразить графически осевые линии этих трубок. Такие трубки называют единичными, а линии их осей - единичными магнитными линиями . Картина магнитного поля изображенная с помощью единичных линий дает не только о качественное, но и количественное представление о нем, т.к. при этом величина вектора магнитной индукции оказывается равной количеству линий, проходящих через единицу поверхности, нормальной вектору B , а количество линий, проходящих через любую поверхность равно значению магнитного потока .

Магнитные линии непрерывны и этот принцип можно математически представить в виде

т.е. магнитный поток, проходящий через любую замкнутую поверхность равен нулю .

Выражение (4) справедливо для поверхности s любой формы. Если рассматривать магнитный поток проходящий через поверхность, образованную витками цилиндрической катушки (рис. 4), то ее можно разделить на поверхности, образованные отдельными витками, т.е. s =s 1 +s 2 +...+s 8 . Причем через поверхности разных витков в общем случае будут проходить разные магнитные потоки. Так на рис. 4, через поверхности центральных витков катушки проходят восемь единичных магнитных линий, а через поверхности крайних витков только четыре.

Для того, чтобы определить полный магнитный поток, проходящий через поверхность всех витков, нужно сложить потоки, проходящие через поверхности отдельных витков, или, иначе говоря, сцепляющиеся с отдельными витками. Например, магнитные потоки, сцепляющиеся с четырьмя верхними витками катушки рис. 4, будут равны: Ф 1 =4; Ф 2 =4; Ф 3 =6; Ф 4 =8. Также, зеркально-симметрично с нижними.

Потокосцепление - виртуальный (воображаемый общий) магнитный поток Ψ, сцепляющийся со всеми витками катушки, численно равен сумме потоков, сцепляющихся с отдельными витками: Ψ = w э Ф m , где Ф m - магнитный поток, создаваемый током, проходящим по катушке, а w э - эквивалентное или эффективное число витков катушки. Физический смысл потокосцепления - сцепление магнитных полей витков катушки, которое можно выразить коэффициентом (кратностью) потокосцепления k = Ψ/Ф = w э.

То есть для приведенного на рисунке случая, двух зеркально-симметричных половинок катушки:

Ψ = 2(Ф 1 + Ф 2 + Ф 3 + Ф 4) = 48

Виртуальность, то есть воображаемость потокосцепления проявляется в том, что оно не представляет собой реального магнитного потока, который никакая индуктивность не может кратно увеличивать, но поведение импеданса катушки таково, что кажется, что магнитный поток увеличивается кратно эффективному количеству витков, хотя реально - это просто взаимодействие витков в том же самом поле. Если бы катушка увеличивала магнитный поток своим потокосцеплением, то можно было бы создавать умножители магнитного поля на катушке даже без тока, ибо потокосцепление не подразумевает замкнутости цепи катушки, но лишь совместную геометрию близости витков.

Часто реальное распределение потокосцепления по виткам катушки неизвестно, но его можно принять равномерным и одинаковым для всех витков, если реальную катушку заменить эквивалентной с другим числом витков w э, сохраняя при этом величину потокосцепления Ψ = w э Ф m , где Ф m - поток, сцепляющийся с внутренними витками катушки, а w э - эквивалентное или эффективное число витков катушки. Для рассмотренного на рис. 4 случая w э = Ψ/Ф 4 =48/8=6.

Можно также произвести замену реальной катушки на эквивалентную с сохранением числа витков Ψ = w Ф n . Тогда для сохранения потокосцепления необходимо принять, что со всеми витками катушки сцепляется магнитный поток Ф n = Ψ/w .

Первый вариант замены катушки эквивалентной сохраняет картину магнитного поля, изменяя параметры катушки, второй - сохраняет параметры катушки, изменяя картину магнитного поля.


То линии индукции магнитного поля будут проходить через этот контур. Линия магнитной индукции это магнитная индукция в каждой точке этой линии. То есть, мы можем говорить о том, что линии магнитной индукции это поток вектора индукции по пространству, ограниченному и описываемому этими линиями. Можно сказать короче магнитный поток.

В общих чертах с понятием «магнитный поток» знакомятся в девятом классе. Более детальное рассмотрение с выводом формул и пр., относится к курсу физики старших классов. Итак, магнитный поток это определенное количество индукции магнитного поля в какой-либо области пространства.

Направление и количество магнитного потока

Магнитный поток имеет направление и количественное значение. В нашем случае контура с током, говорят, что этот контур пронизывает определенный магнитный поток. При этом понятно, что чем больше по размеру будет контур, тем больший магнитный поток пройдет сквозь него.

То есть, магнитный поток зависит от площади пространства, через которую он проходит. Если мы имеем неподвижную рамку определенного размера, пронизываемую постоянным магнитным полем, то магнитный поток, проходящий через эту рамку, будет постоянным.

Если же мы увеличим силу магнитного поля, то соответственно увеличится магнитная индукция. Величина магнитного потока также возрастет, причем пропорционально возросшей величине индукции. То есть, магнитный поток зависит от величины индукции магнитного поля и площади пронизываемой поверхности.

Магнитный поток и рамка - рассмотрим пример

Рассмотрим вариант, когда наша рамка расположена перпендикулярно магнитному потоку. Площадь, ограничиваемая этой рамкой, будет максимальна по отношению к проходящему через нее магнитному потоку. Следовательно, величина потока будет максимальной для данной величины индукции магнитного поля.

Если же мы начнем вращать рамку относительно направления магнитного потока, то площадь, через которую может проходить магнитный поток, будет уменьшаться, следовательно, будет уменьшаться величина магнитного потока через эту рамку. Причем, она будет уменьшаться вплоть до нуля, когда рамка станет расположена параллельно линиям магнитной индукции.

Магнитный поток будет как бы скользить мимо рамки, он не будет ее пронизывать. В таком случае и действие магнитного поля на рамку с током будет равно нулю. Таким образом, мы можем вывести следующую зависимость:

Магнитный поток, пронизывающий площадь контура, меняется при изменении модуля вектора магнитной индукции B, площади контура S и при вращении контура, то есть при изменении его ориентации к линиям индукции магнитного поля.

Магнитными материалами являются те, которые подвержены влиянию особых силовых полей, в свою очередь, немагнитные материалы не подвержены или слабо подвержены силам магнитного поля, которое принято представлять при помощи силовых линий (магнитный поток), обладающих определенными свойствами. Кроме того что они всегда образуют замкнутые петли, они ведут себя так, будто являются эластичными, то есть во время искажения пытаются вернуться в прежнее расстояние и в свою естественную форму.

Невидимая сила

Магниты имеют свойство притягивать к себе некоторые металлы, особенно железо и сталь, а также никель, сплавы никеля, хрома и кобальта. Материалы, создающие силы притяжения, являются магнитами. Существуют различные их типы. Материалы, которые могут легко намагничиваться, называются ферромагнитными. Они могут быть жесткими или мягкими. Мягкие ферромагнитные материалы, такие как железо, быстро теряют свои свойства. Магниты, изготовленные из этих материалов, называются временными. Жесткие материалы, такие как сталь, держат свои свойства гораздо дольше и используются в качестве постоянных.

Магнитный поток: определение и характеристика

Вокруг магнита существует определенное силовое поле, и это создает возможность возникновения энергии. Магнитный поток равен произведению средних силовых полей перпендикулярной поверхности, в которую он проникает. Его изображают при помощи символа «Φ», измеряется он в единицах, называемых Webers (ВБ). Величина потока, проходящего через заданную площадь, будет меняться от одной точки к другой вокруг предмета. Таким образом, магнитный поток - это так называемая мера силы магнитного поля или электрического тока, основанная на общем количестве заряженных силовых линий, проходящих через определенную область.

Раскрывая тайну магнитных потоков

У всех магнитов, независимо от их формы, имеются две области, которые называются полюсами, способными производить определенную цепочку организованной и сбалансированной системы невидимых силовых линий. Эти линии из потока образуют особое поле, форма которого проявляется более интенсивно в некоторых частях по сравнению с другими. Области с наибольшим притяжением называют полюсами. Линии векторного поля не могут быть обнаружены невооруженным глазом. Визуально они всегда отображаются в виде силовых линий с однозначными полюсами на каждом конце материала, где линии более плотные и концентрированные. Магнитный поток - это линии, которые создают вибрации притяжения или отталкивания, показывая их направление и интенсивность.

Линии магнитного потока

Магнитные силовые линии определяются как кривые, перемещающиеся по определенной траектории в магнитном поле. Касательная к этим кривым в любой точке показывает направление магнитного поля в ней же. Характеристики:

    Каждая линия потока образует замкнутый контур.

    Эти индукционные линии никогда не пересекаются, но имеют тенденцию сокращаться или растягиваться, изменяя в ту или иную сторону свои размеры.

    Как правило, силовые линии имеют начало и конец на поверхности.

    Имеется также определенное направление с севера на юг.

    Силовые линии, которые расположены близко друг к другу, образуя сильное магнитное поле.

  • Когда соседние полюса одинаковы (север-север или юг-юг), они отталкиваются друг от друга. Когда соседние полюса не совпадают (север-юг или юг-север), они притягиваются друг к другу. Этот эффект напоминает знаменитое выражение о том, что противоположности притягиваются.

Магнитные молекулы и теория Вебера

Теория Вебера опирается на тот факт, что все атомы имеют магнитные свойства благодаря связи между электронами в атомах. Группы атомов соединяются вместе таким образом, что окружающие их поля вращаются в том же направлении. Такого рода материалы состоят из групп крошечных магнитиков (если рассматривать их на молекулярном уровне) вокруг атомов, это означает, что ферромагнитный материал состоит из молекул, которым свойственны силы притяжения. Они известны как диполи и группируются в домены. Когда материал намагничен, все домены становятся единым целым. Материал теряет свою способность притягивать и отталкивать в том случае, если его домены разъединяются. Диполи в совокупности образуют магнит, но по отдельности каждый из них пытается оттолкнуться от однополярного, таким образом притягиваются противоположные полюса.

Поля и полюса

Силу и направление магнитного поля определяют линии магнитного потока. Область притяжения сильнее там, где линии близко расположены друг к другу. Линии находятся ближе всего у полюса стержневого основания, там притяжение наиболее сильное. Сама планета Земля находится в этом мощном силовом поле. Оно действует так, как будто гигантская полосовая намагниченная пластина проходит через середину планеты. Северным полюсом стрелка компаса направлена в сторону точки, называемой Северный магнитный полюс, южным полюсом она указывает на магнитный юг. Однако эти направления отличаются от географических Северного и Южного полюсов.

Природа магнетизма

Магнетизм играет важную роль в электротехнике и электронике, потому что без его компонентов, таких как реле, соленоиды, катушки индуктивности, дроссели, катушки, не будут работать громкоговорители, электродвигатели, генераторы, трансформаторы, счетчики электроэнергии и т. д. Магниты можно найти в естественном природном состоянии в виде магнитных руд. Существуют два основных типа, это магнетит (его также называют оксид железа) и магнитный железняк. Молекулярная структура этого материала в немагнитном состоянии представлена в виде свободной магнитной цепи или отдельных крошечных частиц, которые свободно располагаются в случайном порядке. Когда материал намагничен, это случайное расположение молекул меняется, а крошечные случайные молекулярные частицы выстраиваются таким образом, что они производят целую серию договоренностей. Эта идея молекулярного выравнивания ферромагнитных материалов называется теорией Вебера.

Измерение и практическое применение

Наиболее распространенные генераторы используют магнитный поток для производства электроэнергии. Его сила широко используется в электрических генераторах. Прибор, который служит для измерения этого интересного явления, называется флюксметром, он состоит из катушки и электронного оборудования, которое оценивает изменение напряжения в катушке. В физике потоком называется показатель числа силовых линий, проходящих через определенную область. Магнитный поток - это мера количества магнитных силовых линий.

Иногда даже немагнитный материал может также иметь диамагнитные и парамагнитные свойства. Интересным фактом является то, что силы притяжения могут быть разрушены при нагревании или ударе молоточком из такого же материала, но они не могут быть уничтожены или изолированы, если просто разбить большой экземпляр на две части. Каждой сломанный кусок будет иметь свой собственный северный и южный полюс, и неважно, насколько маленькими по размеру будут эти кусочки.


Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал См. также: Портал:Физика

Магни́тный пото́к - физическая величина, равная произведению модуля вектора магнитной индукции \vec B на площадь S и косинус угла α между векторами \vec B и нормалью \mathbf{n}. Поток \Phi_B как интеграл вектора магнитной индукции \vec B через конечную поверхность S определяется через интеграл по поверхности:

{{{1}}}

При этом векторный элемент dS площади поверхности S определяется как

{{{1}}}

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через

Напишите отзыв о статье "Магнитный поток"

Ссылки

Отрывок, характеризующий Магнитный поток

– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.
Вернувшись домой, Пьер долго не мог заснуть, думая о том, что с ним случилось. Что же случилось с ним? Ничего. Он только понял, что женщина, которую он знал ребенком, про которую он рассеянно говорил: «да, хороша», когда ему говорили, что Элен красавица, он понял, что эта женщина может принадлежать ему.
«Но она глупа, я сам говорил, что она глупа, – думал он. – Что то гадкое есть в том чувстве, которое она возбудила во мне, что то запрещенное. Мне говорили, что ее брат Анатоль был влюблен в нее, и она влюблена в него, что была целая история, и что от этого услали Анатоля. Брат ее – Ипполит… Отец ее – князь Василий… Это нехорошо», думал он; и в то же время как он рассуждал так (еще рассуждения эти оставались неоконченными), он заставал себя улыбающимся и сознавал, что другой ряд рассуждений всплывал из за первых, что он в одно и то же время думал о ее ничтожестве и мечтал о том, как она будет его женой, как она может полюбить его, как она может быть совсем другою, и как всё то, что он об ней думал и слышал, может быть неправдою. И он опять видел ее не какою то дочерью князя Василья, а видел всё ее тело, только прикрытое серым платьем. «Но нет, отчего же прежде не приходила мне в голову эта мысль?» И опять он говорил себе, что это невозможно; что что то гадкое, противоестественное, как ему казалось, нечестное было бы в этом браке. Он вспоминал ее прежние слова, взгляды, и слова и взгляды тех, кто их видал вместе. Он вспомнил слова и взгляды Анны Павловны, когда она говорила ему о доме, вспомнил тысячи таких намеков со стороны князя Василья и других, и на него нашел ужас, не связал ли он уж себя чем нибудь в исполнении такого дела, которое, очевидно, нехорошо и которое он не должен делать. Но в то же время, как он сам себе выражал это решение, с другой стороны души всплывал ее образ со всею своею женственной красотою.

В ноябре месяце 1805 года князь Василий должен был ехать на ревизию в четыре губернии. Он устроил для себя это назначение с тем, чтобы побывать заодно в своих расстроенных имениях, и захватив с собой (в месте расположения его полка) сына Анатоля, с ним вместе заехать к князю Николаю Андреевичу Болконскому с тем, чтоб женить сына на дочери этого богатого старика. Но прежде отъезда и этих новых дел, князю Василью нужно было решить дела с Пьером, который, правда, последнее время проводил целые дни дома, т. е. у князя Василья, у которого он жил, был смешон, взволнован и глуп (как должен быть влюбленный) в присутствии Элен, но всё еще не делал предложения.

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Формула работы силы Ампера при движении прямого проводника с постоянным током в однородном магнитном поле.

Таким образом, работа силы Ампера может быть выражена через силу тока в перемещаемом проводнике и изменение магнитного потока через контур, в который включен этот проводник:

Индуктивность контура.

Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Энергия магнитного поля.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Электромагнитная индукция.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Опыты Фарадея. Объяснение электромагнитной индукции.

Если подносить постоянный магнит к катушке или наоборот (рис.3.1), то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток, но лучше всего этот эффект проявляется, если две катушки соединить сердечником

По определению Фарадея общим для этих опытов является следующее: если поток вектора индукции, пронизывающий замкнутый, проводящий контур, меняется, то в контуре возникает электрический ток.

Это явление называют явлением электромагнитной индукции , а ток – индукционным. При этом явление совершенно не зависит от способа изменения потока вектора магнитной индукции.

Формула э.д.с. электромагнитной индукции.

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Правило Ленца.

Правило Ленца

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Самоиндукция, ее объяснение.

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.

Замыкание цепи
При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи
При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

Формула э.д.с. самоиндукции.

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Первое и второе положения теории электромагнитного поля Максвелла.

1. Всякое перемещенное электрическое поле порождает вихревое магнитное поле. Переменное электрическое поле было названо Максвеллом, так как оно, подобно обычному току, вызывает магнитное поле. Вихревое магнитное поле порождается как токами проводимости Iпр (движущимися электрическими зарядами), так и токами смещения (перемещенным электрическим полем Е).

Первое уравнение Максвелла

2. Всякое перемещенное магнитное поле порождает вихревое электрическое (основной закон электромагнитной индукции).

Второе уравнение Максвелла:

Электромагнитное излучение.

Электромагни́тные во́лны, электромагни́тное излуче́ние - распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

3.1. Волна - это колебания, распространяющиеся в пространстве в течение времени.
Механические волны могут распространяться только в какой-нибудь среде (веществе): в газе, в жидкости, в твердом теле. Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды. Необходимым условием для появления упругих волн является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Продольные волны характерны только газообразным и жидким средам, а вот поперечные – также и твердым телам: причина этого заключается в том, что частицы, составляющие данные среды, могут свободно перемещаться, так как жестко не зафиксированы, в отличие от твердых тел. Соответственно, поперечные колебания принципиально невозможны.

Продольные волны возникают тогда, когда частицы среды колеблются, ориентируясь вдоль вектора распространения возмущения. Поперечные волны распространяются в перпендикулярном вектору воздействия направлении. Короче: если в среде деформация, вызванная возмущением, проявляется в виде сдвига, растяжения и сжатия, то речь идет о твердом теле, для которого возможны как продольные, так и поперечные волны. Если же появление сдвига невозможно, то среда может быть любой.

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

Длина́ волны́ - расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду колебаний, поэтому

Волновое число (также называемое пространственной частотой ) - это отношение 2π радиан к длине волны: пространственный аналог круговой частоты.

Определение : волновым числом k называется быстрота роста фазы волны φ по пространственной координате.

3.2. Плоская волна - волна, фронт которой имеет форму плоскости.

Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в и заканчивается в , чего, очевидно, быть не может.

Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Волновое уравнение для функции записывается в виде:

где

· - оператор Лапласа;

· - искомая функция;

· - радиус вектора искомой точки;

· - скорость волны;

· - время.

Волновая поверхность - геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Частный случай волновой поверхности - волновой фронт.

А) Плоская волна – это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей.

Б) Сферическая волна – это волна, волновые поверхности которой представляют собой совокупность концентрических сфер.

Луч - линия, нормальной и волновой поверхности. Под направлением распространения волн понимают направление лучей. Если среда распространения волны однородная и изотропная, лучи прямые (причём, если волна плоская - параллельные прямые).

Понятием луч в физике обычно пользуются только в геометрической оптике и акустике, так как при проявлении эффектов, не изучаемых в данных направлениях, смысл понятия луч теряется.

3.3. Энергетические характеристики волны

Среда, в которой распространяется волна, обладает механической энергией, складывающейся из энергий колебательного движения всех ее частиц. Энергия одной частицы с массой m 0 находится по формуле: Е 0 = m 0 Α 2 ω 2 /2. В единице объема среды содержится n = p /m 0 частиц - плотность среды). Поэтому единица объема среды обладает энергией w р = nЕ 0 = ρ Α 2 ω 2 /2.

Объемная плотность энергии (W р)- энергия колебательного движения частиц среды, содержащихся в единице ее объема:

Поток энергии (Ф) - величина, равная энергии, переносимой волной через данную поверхность за единицу времени:

Интенсивность волны или плотность потока энергии (I) - величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:

3.4. Электромагнитная волна

Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Условие возникновения электромагнитных волн. Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. е. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов. При скорости заряда, равной нулю, существует только элект­рическое поле. При постоянной скорости заряда возникает электромаг­нитное поле. При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в про­странстве с конечной скоро­стью.

Электромагнитные волны распространяются в веществе с конечной скоростью. Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Электромагнитное излучение принято делить по частотам диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Интерференция волн. Когерентные волны. Условия когерентности волн.

Оптическая длина пути (о.д.п.) света. Связь разности о.д.п. волн с разностью фаз колебаний, вызываемых волнами.

Амплитуда результирующего колебания при интерференции двух волн. Условия максимумов и минимумов амплитуды при интерференции двух волн.

Интерференционные полосы и интерференционная картина на плоском экране при освещении двух узких длинных параллельных щелей: а) красным светом, б) белым светом.

1) ИНТЕРФЕРЕНЦИЯ ВОЛН - такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн.

Необходимые условия для наблюдения интерференции:

1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);

2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).

Волны, для которых выполняются эти два условия, называются КОГЕРЕНТНЫМИ . Первое условие иногда называют временной когерентностью , второе - пространственной когерентностью .

Рассмотрим в качестве примера результат сложения двух одинаковых однонаправленных синусоид. Варьировать будем только их относительный сдвиг. Иными словами, мы складываем две когерентные волны, которые отличаются только начальными фазами (либо их источники сдвинуты друг относительно друга, либо то и другое вместе).

Если синусоиды расположены так, что их максимумы (и минимумы) совпадают в пространстве, произойдет их взаимное усиление.

Если же синусоиды сдвинуты друг относительно друга на полпериода, максимумы одной придутся на минимумы другой; синусоиды уничтожат друг друга, то есть произойдет их взаимное ослабление.

Математически это выглядит так. Складываем две волны:

здесь х 1 и х 2 - расстояния от источников волн до точки пространства, в которой мы наблюдаем результат наложения. Квадрат амплитуды результирующей волны (пропорциональный интенсивности волны) дается выражением:

Максимум этого выражения есть 4A 2 , минимум - 0; всё зависит от разности начальных фаз и от так называемой разности хода волн :

При в данной точке пространства будет наблюдаться интерференционный максимум, при - интерференционный минимум.

В нашем простом примере источники волн и точка пространства, где мы наблюдаем интерференцию, находятся на одной прямой; вдоль этой прямой интерференционная картина для всех точек одинакова. Если же мы сдвинем точку наблюдения в сторону от прямой, соединяющей источники, мы попадем в область пространства, где интерференционная картина меняется от точки к точке. В этом случае мы будем наблюдать интерференцию волн с равными частотами и близкими волновыми векторами.

2)1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

2. Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :

где , , λ – длина волны света в вакууме.

3)Амплитуда результирующего колебания зависит от величины, называемой разностью хода волн.

Если разность хода равна целому числу волн, то волны приходят в точку синфазно. Складываясь, волны усиливают друг друга и дают колебание с удвоенной амплитудой.

Если разность хода равна нечетному числу полуволн, то волны приходят в точку А в противофазе. В этом случае они гасят друг друга, амплитуда результирующего колебания равна нулю.

В других точках пространства наблюдается частичное усиление или ослабление результирующей волны.

4)Опыт Юнга

В 1802 г. английский ученый Томас Юнг поставил опыт, в котором наблюдал интерференцию света. Свет из узкой щели S , падал на экран с двумя близко расположенными щелями S 1 и S 2 . Проходя через каждую из щелей, световой пучок расширялся, и на белом экране световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Осуществление интерференции света от обычных источников света.

Интерференция света на тонкой пленке. Условия максимумов и минимумов интерференции света на пленке в отраженном и в проходящем свете.

Интерференционные полосы равной толщины и интерференционные полосы равного наклона.

1)Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

2) интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённыхобъективов. Луч света, проходя через плёнку толщиной , отразится дважды - от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, отчего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где - длина волны. Если нм, то толщина плёнки равняется 550:4=137,5 нм.